-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
118 lines (101 loc) · 3.93 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
"""A unified training script for all models used in the SlotDiffusion project."""
import os
import sys
import pwd
import importlib
import argparse
import wandb
import torch
from nerv.utils import mkdir_or_exist
from nerv.training import BaseDataModule
def main(params):
# build datamodule
datasets = build_dataset(params)
train_set, val_set = datasets[0], datasets[1]
collate_fn = datasets[2] if len(datasets) == 3 else None
datamodule = BaseDataModule(
params,
train_set=train_set,
val_set=val_set,
use_ddp=params.ddp,
collate_fn=collate_fn,
)
# build model
model = build_model(params)
# create checkpoint dir
exp_name = os.path.basename(args.params)
ckp_path = os.path.join('checkpoint', exp_name, 'models')
if args.local_rank == 0:
mkdir_or_exist(os.path.dirname(ckp_path))
# on clusters, quota under user dir is usually limited
# soft link to save the weights in temp space for checkpointing
# e.g. on our cluster, the temp dir is /checkpoint/$USR/$SLURM_JOB_ID/
# TODO: modify this if you are not running on clusters
SLURM_JOB_ID = os.environ.get('SLURM_JOB_ID')
if SLURM_JOB_ID and not os.path.exists(ckp_path):
os.system(r'ln -s /checkpoint/{}/{}/ {}'.format(
pwd.getpwuid(os.getuid())[0], SLURM_JOB_ID, ckp_path))
# it's not good to hard-code the wandb id
# but on preemption clusters, we want the job to resume the same wandb
# process after resuming training (i.e. drawing the same graph)
# so we have to keep the same wandb id
# TODO: modify this if you are not running on preemption clusters
preemption = True
if SLURM_JOB_ID and preemption:
logger_id = logger_name = f'{exp_name}-{SLURM_JOB_ID}'
else:
logger_name = exp_name
logger_id = None
wandb.init(
project=params.project,
name=logger_name,
id=logger_id,
dir=ckp_path,
)
method = build_method(
model=model,
datamodule=datamodule,
params=params,
ckp_path=ckp_path,
local_rank=args.local_rank,
use_ddp=args.ddp,
use_fp16=args.fp16,
)
method.fit(
resume_from=args.weight, san_check_val_step=params.san_check_val_step)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='SlotDiffusion training')
parser.add_argument(
'--task',
type=str,
default='img_based',
choices=['img_based', 'video_based', 'vp_vqa'])
parser.add_argument('--params', type=str, required=True)
parser.add_argument('--weight', type=str, default='', help='load weight')
parser.add_argument('--fp16', action='store_true', help='half-precision')
parser.add_argument('--ddp', action='store_true', help='DDP training')
parser.add_argument('--cudnn', action='store_true', help='cudnn benchmark')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--local-rank', type=int, default=0)
args = parser.parse_args()
# import `build_dataset/model/method` function according to `args.task`
print(f'INFO: training model in {args.task} task!')
task = importlib.import_module(f'slotdiffusion.{args.task}')
build_dataset = task.build_dataset
build_model = task.build_model
build_method = task.build_method
# load the params
if args.params.endswith('.py'):
args.params = args.params[:-3]
sys.path.append(os.path.dirname(args.params))
params = importlib.import_module(os.path.basename(args.params))
params = params.SlotAttentionParams()
params.ddp = args.ddp
if args.fp16:
print('INFO: using FP16 training!')
if args.ddp:
print('INFO: using DDP training!')
if args.cudnn:
torch.backends.cudnn.benchmark = True
print('INFO: using cudnn benchmark!')
main(params)