-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathidentification.py
executable file
·428 lines (379 loc) · 21 KB
/
identification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
from collections import defaultdict
import nltk
import numpy as np
import random
import string
import torchtext
from scipy.special import softmax
from sklearn.metrics import confusion_matrix
from torchtext.data.utils import ngrams_iterator
from torchtext.vocab import GloVe
from tqdm import tqdm
from classification_model import *
''' Main Function '''
def euphemism_identification(top_words, all_text, euphemism_answer, input_keywords, target_name, args):
print('\n' + '*' * 40 + ' [Euphemism Identification] ' + '*' * 40)
''' Construct Training Dataset'''
all_classifiers = ['LRT', 'LSTM', 'LSTMAtten', 'RNN', 'RCNN', 'SelfAttention']
classifier_1 = all_classifiers[args.c1]
NGRAMS = 1
final_test = get_final_test(euphemism_answer, top_words, input_keywords)
train_data, test_data, final_test_data, train_data_pre, test_data_pre, unique_vocab_dict, unique_vocab_list = get_train_test_data(input_keywords, target_name, all_text, final_test, NGRAMS, train_perc=0.8)
final_test_output, final_test_data_t = [], [] # For faster computation
if args.coarse:
print('-' * 40 + ' [Coarse Binary Classifier] ' + '-' * 40)
print('Model: ' + classifier_1)
if classifier_1 in ['LRT']:
model, final_out, final_test_output, final_test_data_t = train_LRT_classifier(train_data_pre, test_data_pre, final_test_data, final_test, unique_vocab_dict, unique_vocab_list, target_name, IsPre=1, has_coarse=0)
else:
train_iter, test_iter, Final_test_iter, lr, epoch_num, model, loss_fn = train_initialization(classifier_1, train_data_pre, test_data_pre, final_test_data, target_name, IsPre=1)
for epoch in range(epoch_num):
train_loss, train_acc = train_model(model, train_iter, loss_fn, lr, epoch)
test_loss, test_acc, _ = eval_model(model, test_iter, loss_fn)
print(f'Epoch: {epoch + 1:02}, Train Loss: {train_loss:.3f}, Train Acc: {train_acc:.2f}%, Test Loss: {test_loss:3f}, Test Acc: {test_acc:.2f}%')
_, _, final_test_output = eval_model(model, Final_test_iter, loss_fn)
convert_final_test_output_to_final_out(final_test_output, target_name, final_test, torch.Tensor([i[1] for i in final_test_data]).long(), IsPre=1, has_coarse=0)
print('\n' + '-' * 40 + ' [Fine-grained Multi-class Classifer] ' + '-' * 40)
classifier_2 = all_classifiers[args.c2]
print('Model: ' + classifier_2)
if classifier_2 in ['LRT']:
model, final_out, _, _ = train_LRT_classifier(train_data, test_data, final_test_data, final_test, unique_vocab_dict, unique_vocab_list, target_name, 0, args.coarse, final_test_output, final_test_data_t)
get_filtered_final_out(final_out, final_test, input_keywords, target_name)
else:
train_iter, test_iter, Final_test_iter, lr, epoch_num, model, loss_fn = train_initialization(classifier_2, train_data, test_data, final_test_data, target_name)
for epoch in range(epoch_num):
train_loss, train_acc = train_model(model, train_iter, loss_fn, lr, epoch)
test_loss, test_acc, _ = eval_model(model, test_iter, loss_fn)
print(f'Epoch: {epoch + 1:02}, Train Loss: {train_loss:.3f}, Train Acc: {train_acc:.2f}%, Test Loss: {test_loss:3f}, Test Acc: {test_acc:.2f}%')
_, _, final_test_output = eval_model(model, Final_test_iter, loss_fn)
final_out = convert_final_test_output_to_final_out(final_test_output, target_name, final_test, torch.Tensor([i[1] for i in final_test_data]).long(), 0, args.coarse, final_test_output)
get_filtered_final_out(final_out, final_test, input_keywords, target_name)
return 0
''' Logistic Regression '''
def train_LRT_classifier(train_data, test_data, final_test_data, final_test, unique_vocab_dict, unique_vocab_list, target_name, IsPre, has_coarse=0, final_test_output_pre=[], final_test_data_t=[]):
def transform_data(a_dataset, unique_vocab_dict, NGRAMS):
train_X = torch.zeros(len(a_dataset), len(unique_vocab_dict))
for i in tqdm(range(len(a_dataset))):
tokens = nltk.word_tokenize(a_dataset[i][0])
tokens = tokens if NGRAMS == 1 else ngrams_iterator(tokens, NGRAMS)
for j in tokens:
if j in [string.punctuation, 'to', 'and', 'the', 'be', 'a', 'is', 'that', 'of']:
continue
try:
train_X[i][unique_vocab_dict[j]] += 0.5
except:
pass
train_Y = torch.Tensor([i[1] for i in a_dataset]).long()
return train_X, train_Y
print('[utils.py] Transforming datasets...')
train_X, train_Y = transform_data(train_data, unique_vocab_dict, NGRAMS=1)
test_X, test_Y = transform_data(test_data, unique_vocab_dict, NGRAMS=1)
final_test_X, final_test_Y = transform_data(final_test_data, unique_vocab_dict, NGRAMS=1) if final_test_data_t == [] else final_test_data_t
N_EPOCHS = 50
num_class = 2 if IsPre else max(target_name.values())+1
model = LR(unique_vocab_dict, unique_vocab_list, num_class=num_class).to(device)
learning_rate = 5.0
criterion = torch.nn.CrossEntropyLoss()
# criterion1 = torch.nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1, gamma=0.99)
BATCH_SIZE = 32
print('[utils.py] Model Training...')
for epoch in range(N_EPOCHS):
model.train()
train_loss = 0.0
for i in range(0, len(train_X), BATCH_SIZE):
try:
batch_X = train_X[i:i + BATCH_SIZE].to(device)
batch_Y = train_Y[i:i + BATCH_SIZE].to(device)
out_X = model(batch_X)
except:
batch_X = train_X[i:i + BATCH_SIZE].to(device).long()
batch_Y = train_Y[i:i + BATCH_SIZE].to(device)
out_X = model(batch_X)
loss = criterion(out_X, batch_Y)
# temp_Y = []
# for j in batch_Y:
# temp_Y.append(np.eye(len(Labels))[j.item()])
# temp_Y = torch.Tensor(temp_Y).to(device)
# loss = criterion1(out_X, temp_Y)
train_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
model.eval()
_, train_acc = _test_result(train_X, train_Y, model, BATCH_SIZE, confusion=0, msg='Training')
_, test_acc = _test_result(test_X, test_Y, model, BATCH_SIZE, confusion=0, msg='Testing')
print(f'Epoch: {epoch + 1:02}, Train Loss: {train_loss:.3f}, Train Acc: {train_acc:.2f}%, Test Acc: {test_acc:.2f}%')
final_test_output, _ = _test_result(final_test_X, final_test_Y, model, BATCH_SIZE, confusion=0)
final_out = convert_final_test_output_to_final_out(final_test_output, target_name, final_test, final_test_Y, IsPre, has_coarse, final_test_output_pre)
# torch.save(model, './classifier_' + dataset_name + '.pth')
return model, final_out, final_test_output, (final_test_X, final_test_Y)
def _test_result(test_X, test_Y, model, BATCH_SIZE, confusion=0, msg=''):
output = []
with torch.no_grad():
for i in range(0, len(test_X), BATCH_SIZE):
try:
batch_X = test_X[i:i + BATCH_SIZE].to(device)
out_X = model(batch_X)
except:
batch_X = test_X[i:i + BATCH_SIZE].to(device).long()
out_X = model(batch_X)
output.extend(out_X.tolist())
acc = 100 * sum(np.argmax(output, 1) == test_Y.tolist()) / float(len(test_Y))
if confusion == 1:
GT = test_Y.tolist()
ours = np.array(output).argmax(1).tolist()
print(msg, end=' ')
print(f'Accuracy: {acc:.2f}%')
print(confusion_matrix(GT, ours))
return output, acc
''' Neural Models '''
def train_initialization(classifier_name, train_data, test_data, Final_test, target_name, IsPre=0):
def load_dataset(train_data, test_data, Final_test, embedding_length, batch_size):
"""
tokenizer : Breaks sentences into a list of words. If sequential=False, no tokenization is applied
Field : A class that stores information about the way of preprocessing
fix_length : An important property of TorchText is that we can let the input to be variable length, and TorchText will
dynamically pad each sequence to the longest sequence in that "batch". But here we are using fi_length which
will pad each sequence to have a fix length of 200.
build_vocab : It will first make a vocabulary or dictionary mapping all the unique words present in the train_data to an
idx and then after it will use GloVe word embedding to map the index to the corresponding word embedding.
vocab.vectors : This returns a torch tensor of shape (vocab_size x embedding_dim) containing the pre-trained word embeddings.
BucketIterator : Defines an iterator that batches examples of similar lengths together to minimize the amount of padding needed.
"""
def get_dataset(a_data, fields):
examples = []
for data_i in tqdm(a_data):
examples.append(torchtext.data.Example.fromlist([data_i[0], data_i[1]], fields))
return examples
tokenize = lambda x: x.split()
TEXT = torchtext.data.Field(sequential=True, tokenize=tokenize, lower=True, include_lengths=True, batch_first=True, fix_length=15)
LABEL = torchtext.data.LabelField()
fields = [("text", TEXT), ("label", LABEL)]
train_data = get_dataset(train_data, fields)
test_data = get_dataset(test_data, fields)
Final_test = get_dataset(Final_test, fields)
train_data = torchtext.data.Dataset(train_data, fields=fields)
test_data = torchtext.data.Dataset(test_data, fields=fields)
Final_test = torchtext.data.Dataset(Final_test, fields=fields)
TEXT.build_vocab(train_data, vectors=GloVe(name='6B', dim=embedding_length))
LABEL.build_vocab(train_data)
word_embeddings = TEXT.vocab.vectors
vocab_size = len(TEXT.vocab)
print("Length of Text Vocabulary: " + str(len(TEXT.vocab)))
print("Vector size of Text Vocabulary: ", TEXT.vocab.vectors.size())
print("Label Length: " + str(len(LABEL.vocab)))
### If validation
# train_data, valid_data = train_data.split()
# train_iter, valid_iter, test_iter = torchtext.data.BucketIterator.splits((train_data, valid_data, test_data), batch_size=32, sort_key=lambda x: len(x.text), repeat=False, shuffle=True)
train_iter, test_iter, Final_test_iter = torchtext.data.Iterator.splits((train_data, test_data, Final_test), batch_size=batch_size, sort=False, repeat=False)
return TEXT, vocab_size, word_embeddings, train_iter, test_iter, Final_test_iter
output_size = 2 if IsPre else max(target_name.values())+1
learning_rate = 0.002
hidden_size = 256
embedding_length = 100
epoch_num = 3 if IsPre else 10
batch_size = 32
pre_train = True
embedding_tune = False
TEXT, vocab_size, word_embeddings, train_iter, test_iter, Final_test_iter = load_dataset(train_data, test_data, [[x[0], 0] for x in Final_test], embedding_length, batch_size)
if classifier_name == 'LSTM':
model = LSTM(batch_size, output_size, hidden_size, vocab_size, embedding_length, word_embeddings, pre_train, embedding_tune)
elif classifier_name == 'LSTMAtten':
model = LSTM_AttentionModel(batch_size, output_size, hidden_size, vocab_size, embedding_length, word_embeddings, pre_train, embedding_tune)
elif classifier_name == 'RNN':
learning_rate = 0.0005
model = RNN(batch_size, output_size, hidden_size, vocab_size, embedding_length, word_embeddings, pre_train, embedding_tune)
elif classifier_name == 'RCNN':
model = RCNN(batch_size, output_size, hidden_size, vocab_size, embedding_length, word_embeddings, pre_train, embedding_tune)
elif classifier_name == 'SelfAttention':
model = SelfAttention(batch_size, output_size, hidden_size, vocab_size, embedding_length, word_embeddings, pre_train, embedding_tune)
else:
raise ValueError('Not a valid classifier_name!!!')
model = model.to(device)
loss_fn = F.cross_entropy
return train_iter, test_iter, Final_test_iter, learning_rate, epoch_num, model, loss_fn
def train_model(model, train_iter, loss_fn, learning_rate, epoch):
def clip_gradient(model, clip_value):
params = list(filter(lambda p: p.grad is not None, model.parameters()))
for p in params:
p.grad.data.clamp_(-clip_value, clip_value)
total_epoch_loss = 0
total_epoch_acc = 0
optim = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=learning_rate)
steps = 0
model.train()
for idx, batch in enumerate(train_iter):
text = batch.text[0]
target = batch.label
target = torch.autograd.Variable(target).long()
text = text.to(device)
target = target.to(device)
if (text.size()[0] is not 32): # One of the batch returned by BucketIterator has length different than 32.
continue
optim.zero_grad()
prediction = model(text)
loss = loss_fn(prediction, target)
num_corrects = (torch.max(prediction, 1)[1].view(target.size()).data == target.data).float().sum()
acc = 100.0 * num_corrects / len(batch)
loss.backward()
clip_gradient(model, 1e-1)
optim.step()
steps += 1
if steps % 1000 == 0:
print(f'Epoch: {epoch + 1}, Idx: {idx + 1}, Training Loss: {loss.item():.4f}, Training Accuracy: {acc.item(): .2f}%')
total_epoch_loss += loss.item()
total_epoch_acc += acc.item()
return total_epoch_loss / len(train_iter), total_epoch_acc / len(train_iter)
def eval_model(model, val_iter, loss_fn):
total_epoch_loss = 0
total_epoch_acc = 0
all_prediction = []
all_target = []
model.eval()
with torch.no_grad():
for idx, batch in enumerate(val_iter):
text = batch.text[0]
if (text.size()[0] is not 32):
continue
target = batch.label
target = torch.autograd.Variable(target).long()
text = text.to(device)
target = target.to(device)
prediction = model(text)
all_prediction.extend(prediction.tolist())
all_target.extend(target.tolist())
loss = loss_fn(prediction, target)
num_corrects = (torch.max(prediction, 1)[1].view(target.size()).data == target.data).sum()
acc = 100.0 * num_corrects / len(batch)
total_epoch_loss += loss.item()
total_epoch_acc += acc.item()
return total_epoch_loss / len(val_iter), total_epoch_acc / len(val_iter), all_prediction
''' Utility Functions '''
def get_train_test_data(input_keywords, target_name, all_text, final_test, NGRAMS, train_perc):
print('[utils.py] Constructing train and test data...')
all_data = []
all_data_pre = []
final_test_data = []
for i in tqdm(all_text):
temp = nltk.word_tokenize(i)
for j, keyword in enumerate(input_keywords): # Add positive labels that belong to input keywords.
if keyword not in temp:
continue
temp_index = temp.index(keyword)
masked_sentence = ' '.join(temp[: temp_index]) + ' [MASK] ' + ' '.join(temp[temp_index + 1:])
all_data.append([masked_sentence, target_name[keyword]])
all_data_pre.append([masked_sentence, 1]) # is one of the target keywords.
temp_index = random.randint(0, len(temp)-1)
if temp[temp_index] not in input_keywords: # Add negative labels that NOT belong to input keywords.
masked_sentence = ' '.join(temp[: temp_index]) + ' [MASK] ' + ' '.join(temp[temp_index + 1:])
all_data_pre.append([masked_sentence, 0]) # is NOT one of the target keywords.
for j, keyword in enumerate(final_test): # Construct final_test_data
if keyword not in temp:
continue
temp_index = temp.index(keyword)
masked_sentence = ' '.join(temp[: temp_index]) + ' [MASK] ' + ' '.join(temp[temp_index + 1:])
final_test_data.append([masked_sentence, j]) # final_test_data's label is the id number of final_test. For later final_out construction
def _shuffle_and_balance(all_data, max_len):
# for i in range(max(target_name.values())+2):
# print(sum([x[1] == i for x in all_data]), end=', ')
# print()
random.shuffle(all_data)
data_len = defaultdict(int)
all_data_balanced = []
for i in all_data:
if data_len[i[1]] == max_len:
continue
data_len[i[1]] += 1
all_data_balanced.append(i)
random.shuffle(all_data_balanced)
train_data = all_data_balanced[:int(train_perc * len(all_data_balanced))]
test_data = all_data_balanced[int(train_perc * len(all_data_balanced)):]
return train_data, test_data
train_data, test_data = _shuffle_and_balance(all_data, max_len=2000)
train_data_pre, test_data_pre = _shuffle_and_balance(all_data_pre, max_len=min(100000, sum([x[1]==0 for x in all_data_pre]), sum([x[1]==1 for x in all_data_pre])))
unique_vocab_dict, unique_vocab_list = build_vocab(train_data, NGRAMS, min_count=10)
return train_data, test_data, final_test_data, train_data_pre, test_data_pre, unique_vocab_dict, unique_vocab_list
def get_filtered_final_out(final_out, final_test, input_keywords, target_name):
print('\n' + '-' * 40 + ' [Final Results] ' + '-' * 40)
final_top_words = []
filtered_final_out = []
filtered_final_test = {}
for i, word in enumerate(final_test):
if final_out[i] == [len(input_keywords)]:
continue
final_top_words.append(word)
if final_test[word] != ['None']:
filtered_final_out.append(final_out[i])
filtered_final_test[word] = final_test[word]
print_final_out(filtered_final_out, filtered_final_test, target_name)
return 0
def print_final_out(final_out, final_test, target_name):
ranking_list = []
target_name_list = []
for i in range(max(target_name.values())+1):
target_name_list.append([x for x in target_name if target_name[x] == i])
for i, word in enumerate(final_test):
# print('{:12s}: \t'.format(word), end='')
position = 0
for j in final_out[i]:
position += 1
if any(ele in target_name_list[j] for ele in final_test[word]):
break
ranking_list.append(position)
print('Average ranking is {:.2f} for {:d} euphemisms.'.format(sum(ranking_list)/len(ranking_list), len(ranking_list)))
topk_acc = [sum(x <= k + 1 for x in ranking_list) / len(final_test) for k in range(len(target_name_list))]
print('[Top-k Accuracy]: ', end='')
for k in range(len(target_name_list)):
print('| {:2d} '.format(k + 1), end='')
print()
print(' ' * 18, end='')
for k in range(len(target_name_list)):
print('| {:.2f} '.format(topk_acc[k]), end='')
print()
return 0
def convert_final_test_output_to_final_out(final_test_output, target_name, final_test, final_test_Y, IsPre, has_coarse, final_test_output_pre=[]):
final_test_output = softmax(final_test_output, axis=1).tolist()
if IsPre:
final_out = [np.array([0.0, 0.0]) for x in range(len(final_test))]
for i, j in enumerate(final_test_output):
if j[0] < j[1]:
final_out[final_test_Y[i]] += j
return final_out
final_out = [np.array([0.0 for y in range(max(target_name.values())+1)]) for x in range(len(final_test))]
for i, j in enumerate(final_test_output):
if has_coarse and i < len(final_test_output_pre):
if final_test_output_pre[i][0] < final_test_output_pre[i][1]:
final_out[final_test_Y[i]] += j
else:
final_out[final_test_Y[i]] += j
for i in range(len(final_out)):
if sum(final_out[i]) == 0:
final_out[i] = [len(target_name)]
else:
final_out[i] = np.argsort(final_out[i])[::-1].tolist()
return final_out
def get_final_test(euphemism_answer, top_words, input_keywords):
final_test = {}
for x in top_words:
if x in euphemism_answer:
if any(ele in euphemism_answer[x] for ele in input_keywords):
final_test[x] = euphemism_answer[x]
else:
final_test[x] = ['None']
else:
final_test[x] = ['None']
return final_test
def build_vocab(xlist, NGRAMS, min_count):
vocabi2w = ['[SOS]', '[EOS]', '[PAD]', '[UNK]'] # A list of unique words
seen = defaultdict(int)
for i in range(len(xlist)):
tokens = nltk.word_tokenize(xlist[i][0])
tokens = tokens if NGRAMS == 1 else ngrams_iterator(tokens, NGRAMS)
for token in tokens:
seen[token] += 1
vocabi2w += [x for x in seen if seen[x] >= min_count]
vocabw2i = {vocabi2w[x]:x for x in range(len(vocabi2w))}
return vocabw2i, vocabi2w