-
Notifications
You must be signed in to change notification settings - Fork 8k
/
train.py
229 lines (188 loc) · 9.88 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import json
import os
import datetime
import torch
from torch.utils import data
import numpy as np
import transforms
from model import HighResolutionNet
from my_dataset_coco import CocoKeypoint
from train_utils import train_eval_utils as utils
def create_model(num_joints, load_pretrain_weights=True):
model = HighResolutionNet(base_channel=32, num_joints=num_joints)
if load_pretrain_weights:
# 载入预训练模型权重
# 链接:https://pan.baidu.com/s/1Lu6mMAWfm_8GGykttFMpVw 提取码:f43o
weights_dict = torch.load("./hrnet_w32.pth", map_location='cpu')
for k in list(weights_dict.keys()):
# 如果载入的是imagenet权重,就删除无用权重
if ("head" in k) or ("fc" in k):
del weights_dict[k]
# 如果载入的是coco权重,对比下num_joints,如果不相等就删除
if "final_layer" in k:
if weights_dict[k].shape[0] != num_joints:
del weights_dict[k]
missing_keys, unexpected_keys = model.load_state_dict(weights_dict, strict=False)
if len(missing_keys) != 0:
print("missing_keys: ", missing_keys)
return model
def main(args):
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
print("Using {} device training.".format(device.type))
# 用来保存coco_info的文件
results_file = "results{}.txt".format(datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
with open(args.keypoints_path, "r") as f:
person_kps_info = json.load(f)
fixed_size = args.fixed_size
heatmap_hw = (args.fixed_size[0] // 4, args.fixed_size[1] // 4)
kps_weights = np.array(person_kps_info["kps_weights"],
dtype=np.float32).reshape((args.num_joints,))
data_transform = {
"train": transforms.Compose([
transforms.HalfBody(0.3, person_kps_info["upper_body_ids"], person_kps_info["lower_body_ids"]),
transforms.AffineTransform(scale=(0.65, 1.35), rotation=(-45, 45), fixed_size=fixed_size),
transforms.RandomHorizontalFlip(0.5, person_kps_info["flip_pairs"]),
transforms.KeypointToHeatMap(heatmap_hw=heatmap_hw, gaussian_sigma=2, keypoints_weights=kps_weights),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]),
"val": transforms.Compose([
transforms.AffineTransform(scale=(1.25, 1.25), fixed_size=fixed_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
}
data_root = args.data_path
# load train data set
# coco2017 -> annotations -> person_keypoints_train2017.json
train_dataset = CocoKeypoint(data_root, "train", transforms=data_transform["train"], fixed_size=args.fixed_size)
# 注意这里的collate_fn是自定义的,因为读取的数据包括image和targets,不能直接使用默认的方法合成batch
batch_size = args.batch_size
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
print('Using %g dataloader workers' % nw)
train_data_loader = data.DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True,
pin_memory=True,
num_workers=nw,
collate_fn=train_dataset.collate_fn)
# load validation data set
# coco2017 -> annotations -> person_keypoints_val2017.json
val_dataset = CocoKeypoint(data_root, "val", transforms=data_transform["val"], fixed_size=args.fixed_size,
det_json_path=args.person_det)
val_data_loader = data.DataLoader(val_dataset,
batch_size=batch_size,
shuffle=False,
pin_memory=True,
num_workers=nw,
collate_fn=val_dataset.collate_fn)
# create model
model = create_model(num_joints=args.num_joints)
# print(model)
model.to(device)
# define optimizer
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.AdamW(params,
lr=args.lr,
weight_decay=args.weight_decay)
scaler = torch.cuda.amp.GradScaler() if args.amp else None
# learning rate scheduler
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_gamma)
# 如果指定了上次训练保存的权重文件地址,则接着上次结果接着训练
if args.resume != "":
checkpoint = torch.load(args.resume, map_location='cpu')
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if args.amp and "scaler" in checkpoint:
scaler.load_state_dict(checkpoint["scaler"])
print("the training process from epoch{}...".format(args.start_epoch))
train_loss = []
learning_rate = []
val_map = []
for epoch in range(args.start_epoch, args.epochs):
# train for one epoch, printing every 50 iterations
mean_loss, lr = utils.train_one_epoch(model, optimizer, train_data_loader,
device=device, epoch=epoch,
print_freq=50, warmup=True,
scaler=scaler)
train_loss.append(mean_loss.item())
learning_rate.append(lr)
# update the learning rate
lr_scheduler.step()
# evaluate on the test dataset
coco_info = utils.evaluate(model, val_data_loader, device=device,
flip=True, flip_pairs=person_kps_info["flip_pairs"])
# write into txt
with open(results_file, "a") as f:
# 写入的数据包括coco指标还有loss和learning rate
result_info = [f"{i:.4f}" for i in coco_info + [mean_loss.item()]] + [f"{lr:.6f}"]
txt = "epoch:{} {}".format(epoch, ' '.join(result_info))
f.write(txt + "\n")
val_map.append(coco_info[1]) # @0.5 mAP
# save weights
save_files = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch}
if args.amp:
save_files["scaler"] = scaler.state_dict()
torch.save(save_files, "./save_weights/model-{}.pth".format(epoch))
# plot loss and lr curve
if len(train_loss) != 0 and len(learning_rate) != 0:
from plot_curve import plot_loss_and_lr
plot_loss_and_lr(train_loss, learning_rate)
# plot mAP curve
if len(val_map) != 0:
from plot_curve import plot_map
plot_map(val_map)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
description=__doc__)
# 训练设备类型
parser.add_argument('--device', default='cuda:0', help='device')
# 训练数据集的根目录(coco2017)
parser.add_argument('--data-path', default='/data/coco2017', help='dataset')
# COCO数据集人体关键点信息
parser.add_argument('--keypoints-path', default="./person_keypoints.json", type=str,
help='person_keypoints.json path')
# 原项目提供的验证集person检测信息,如果要使用GT信息,直接将该参数置为None,建议设置成None
parser.add_argument('--person-det', type=str, default=None)
parser.add_argument('--fixed-size', default=[256, 192], nargs='+', type=int, help='input size')
# keypoints点数
parser.add_argument('--num-joints', default=17, type=int, help='num_joints')
# 文件保存地址
parser.add_argument('--output-dir', default='./save_weights', help='path where to save')
# 若需要接着上次训练,则指定上次训练保存权重文件地址
parser.add_argument('--resume', default='', type=str, help='resume from checkpoint')
# 指定接着从哪个epoch数开始训练
parser.add_argument('--start-epoch', default=0, type=int, help='start epoch')
# 训练的总epoch数
parser.add_argument('--epochs', default=210, type=int, metavar='N',
help='number of total epochs to run')
# 针对torch.optim.lr_scheduler.MultiStepLR的参数
parser.add_argument('--lr-steps', default=[170, 200], nargs='+', type=int, help='decrease lr every step-size epochs')
# 针对torch.optim.lr_scheduler.MultiStepLR的参数
parser.add_argument('--lr-gamma', default=0.1, type=float, help='decrease lr by a factor of lr-gamma')
# 学习率
parser.add_argument('--lr', default=0.001, type=float,
help='initial learning rate, 0.02 is the default value for training '
'on 8 gpus and 2 images_per_gpu')
# AdamW的weight_decay参数
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
# 训练的batch size
parser.add_argument('--batch-size', default=32, type=int, metavar='N',
help='batch size when training.')
# 是否使用混合精度训练(需要GPU支持混合精度)
parser.add_argument("--amp", action="store_true", help="Use torch.cuda.amp for mixed precision training")
args = parser.parse_args()
print(args)
# 检查保存权重文件夹是否存在,不存在则创建
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
main(args)