File tree 2 files changed +5
-5
lines changed
2 files changed +5
-5
lines changed Original file line number Diff line number Diff line change @@ -927,7 +927,7 @@ Cypher和SPARQL使用SELECT立即跳转,但是Datalog一次只进行一小步
927
927
928
928
* 使用基因组数据的研究人员通常需要执行** 序列相似性搜索** ,这意味着需要一个很长的字符串(代表一个DNA分子),并在一个拥有类似但不完全相同的字符串的大型数据库中寻找匹配。这里所描述的数据库都不能处理这种用法,这就是为什么研究人员编写了像GenBank这样的专门的基因组数据库软件的原因【48】。
929
929
* 粒子物理学家数十年来一直在进行大数据类型的大规模数据分析,像大型强子对撞机(LHC)这样的项目现在可以工作在数百亿兆字节的范围内!在这样的规模下,需要定制解决方案来阻止硬件成本的失控【49】。
930
- * ** 全文搜索** 可以说是一种经常与数据库一起使用的数据模型。信息检索是一个很大的专业课题,我们不会在本书中详细介绍,但是我们将在第三章和第三章中介绍搜索索引 。
930
+ * ** 全文搜索** 可以说是一种经常与数据库一起使用的数据模型。信息检索是一个很大的专业课题,我们不会在本书中详细介绍,但是我们将在第三章和第三部分中介绍搜索索引 。
931
931
932
932
让我们暂时将其放在一边。在[ 下一章] ( ch3.md ) 中,我们将讨论在** 实现** 本章描述的数据模型时会遇到的一些权衡。
933
933
Original file line number Diff line number Diff line change @@ -41,7 +41,7 @@ db_get () {
41
41
麻雀虽小,五脏俱全:
42
42
43
43
``` bash
44
- $ db_set 123456 ' {"name":"London","attractions":["Big Ben","London Eye"]}' $
44
+ $ db_set 123456 ' {"name":"London","attractions":["Big Ben","London Eye"]}'
45
45
46
46
$ db_set 42 ' {"name":"San Francisco","attractions":["Golden Gate Bridge"]}'
47
47
@@ -118,7 +118,7 @@ $ cat database
118
118
119
119
*** 崩溃恢复***
120
120
121
- 如果数据库重新启动,则内存散列映射将丢失。原则上,您可以通过从头到尾读取整个段文件并在每次按键时注意每个键的最近值的偏移量来恢复每个段的哈希映射。但是,如果段文件很大,这可能需要很长时间,这将使服务器重新启动痛苦。 Bitcask通过存储加速恢复磁盘上每个段的哈希映射的快照,可以更快地加载到内存中 。
121
+ 如果数据库重新启动,则内存散列映射将丢失。原则上,您可以通过从头到尾读取整个段文件并在每次按键时注意每个键的最近值的偏移量来恢复每个段的哈希映射。但是,如果段文件很大,这可能需要很长时间,这将使服务器重新启动痛苦。 Bitcask 通过存储每个段的哈希映射的快照在磁盘上来加速恢复,可以使哈希映射更快地加载到内存中 。
122
122
123
123
*** 部分写入记录***
124
124
@@ -193,7 +193,7 @@ $ cat database
193
193
194
194
#### 用SSTables制作LSM树
195
195
196
- 这里描述的算法本质上是LevelDB 【6】和RocksDB 【7】中使用的键值存储引擎库,被设计嵌入到其他应用程序中。除此之外,LevelDB可以在Riak中用作Bitcask的替代品。在Cassandra和HBase中使用了类似的存储引擎【8】,这两种引擎都受到了Google的Bigtable文档【9】(引入了SSTable和memtable )的启发。
196
+ 这里描述的算法本质上是LevelDB 【6】和RocksDB 【7】中使用的键值存储引擎库,被设计嵌入到其他应用程序中。除此之外,LevelDB可以在Riak中用作Bitcask的替代品。在Cassandra和HBase中使用了类似的存储引擎【8】,这两种引擎都受到了Google的Bigtable文档【9】(引入了术语 SSTable 和 memtable )的启发。
197
197
198
198
最初这种索引结构是由Patrick O'Neil等人描述的,且被命名为日志结构合并树(或LSM树)【10】,它是基于更早之前的日志结构文件系统【11】来构建的。基于这种合并和压缩排序文件原理的存储引擎通常被称为LSM存储引擎。
199
199
@@ -605,7 +605,7 @@ WHERE product_sk = 31 AND store_sk = 3
605
605
606
606
将磁盘视为一组可以覆写的固定大小的页面。 B树是这种哲学的典范,用在所有主要的关系数据库中和许多非关系型数据库。
607
607
608
- 日志结构的存储引擎是相对较新的发展。他们的主要想法是,他们系统地将随机访问写入顺序写入磁盘 ,由于硬盘驱动器和固态硬盘的性能特点,可以实现更高的写入吞吐量。在完成OLTP方面,我们通过一些更复杂的索引结构和为保留所有数据而优化的数据库做了一个简短的介绍。
608
+ 日志结构的存储引擎是相对较新的发展。他们的主要想法是,他们系统地将随机访问写入转换为磁盘上的顺序写入 ,由于硬盘驱动器和固态硬盘的性能特点,可以实现更高的写入吞吐量。在完成OLTP方面,我们通过一些更复杂的索引结构和为保留所有数据而优化的数据库做了一个简短的介绍。
609
609
610
610
然后,我们从存储引擎的内部绕开,看看典型数据仓库的高级架构。这一背景说明了为什么分析工作负载与OLTP差别很大:当您的查询需要在大量行中顺序扫描时,索引的相关性就会降低很多。相反,非常紧凑地编码数据变得非常重要,以最大限度地减少查询需要从磁盘读取的数据量。我们讨论了列式存储如何帮助实现这一目标。
611
611
You can’t perform that action at this time.
0 commit comments