forked from IlyasHabeeb/Machine_Learning_Focused_Crawler
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Crawler_ML.py
807 lines (598 loc) · 25.2 KB
/
Crawler_ML.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
import csv
import datetime
import heapq
import itertools
import logging
import math
import pickle
import sys
from collections import OrderedDict, deque
from heapq import heapify, heappush, heappop
from urllib.parse import urljoin, urlparse
from urllib.robotparser import RobotFileParser
import numpy as np
import requests
from bs4 import BeautifulSoup
from url_normalize import url_normalize
import nltk
from nltk.corpus import wordnet
# Defining Variables to be Used
LOG = logging.getLogger(__name__)
BASE_URL = 'http://google.com/search?q='
STOP_WORDS = ['webcache', 'watch']
QUERY_SIZE_DICT = {'wildfires': 98600000, 'california': 2370000000,
'brooklyn': 609000000, 'dodgers': 105000000,
'shahrukh': 31000000, 'khan': 774000000,
'pangolin': 5420000, 'armadillo': 32700000,
'world': 15890000000, 'cup': 3240000000,
'hurricane': 432000000, 'florence': 398000000,
'mac': 2170000000, 'miller': 1030000000,
'kate': 1280000000, 'spade': 404000000,
'anthony': 809000000, 'bourdain': 12000000,
'black': 25270000000, 'panther': 414000000,
'mega': 1150000000, 'million': 2910000000,
'results': 11350000000, 'stan': 1350000000,
'lee': 2340000000, 'demi': 568000000,
'lovato': 115000000, 'election': 910000000}
N_SIZE = 25270000000
VISITED_URLS = set()
VISITED_URLS_DICT = {}
COUNTER = itertools.count()
try:
crawler_to_run = sys.argv[1]
except Exception as e:
print("Run File as: python Crawler_ML.py withoutML")
print("or")
print("Run File as: python Crawler_ML.py withML")
sys.exit()
if crawler_to_run == 'withoutML':
RUN_ML = 'False'
elif crawler_to_run == 'withML':
RUN_ML = 'True'
else:
print("Did not understand. Only understands 'withoutML' and 'withML'.")
sys.exit()
QUERY = input(
"Please Enter the Query in small letters (Words Should be Spaced): ")
N = int(input("Please Enter the Number of Pages to Crawl: "))
QUERY_SIMILAR = {}
for q in QUERY.split(' '):
synonyms = set()
for syn in wordnet.synsets(q):
for l in syn.lemmas():
if l.name().lower() != q:
synonyms.add(l.name().lower())
QUERY_SIMILAR[q] = synonyms
# Open-sourced from https://gist.github.com/matteodellamico/4451520
class priority_dict(dict):
"""Dictionary that can be used as a priority queue.
Keys of the dictionary are items to be put into the queue, and values
are their respective priorities. All dictionary methods work as expected.
The advantage over a standard heapq-based priority queue is
that priorities of items can be efficiently updated (amortized O(1))
using code as 'thedict[item] = new_priority.'
The 'smallest' method can be used to return the object with lowest
priority, and 'pop_smallest' also removes it.
The 'sorted_iter' method provides a destructive sorted iterator.
"""
def __init__(self, *args, **kwargs):
super(priority_dict, self).__init__(*args, **kwargs)
self._rebuild_heap()
def _rebuild_heap(self):
self._heap = [(v, k) for k, v in self.items()]
heapify(self._heap)
def smallest(self):
"""Return the item with the lowest priority.
Raises IndexError if the object is empty.
"""
heap = self._heap
v, k = heap[0]
while k not in self or self[k] != v:
heappop(heap)
v, k = heap[0]
return k
def pop_smallest(self):
"""Return the item with the lowest priority and remove it.
Raises IndexError if the object is empty.
"""
heap = self._heap
v, k = heappop(heap)
while k not in self or self[k] != v:
v, k = heappop(heap)
del self[k]
return k
def __setitem__(self, key, val):
# We are not going to remove the previous value from the heap,
# since this would have a cost O(n).
super(priority_dict, self).__setitem__(key, val)
if len(self._heap) < 2 * len(self):
heappush(self._heap, (val, key))
else:
# When the heap grows larger than 2 * len(self), we rebuild it
# from scratch to avoid wasting too much memory.
self._rebuild_heap()
def setdefault(self, key, val):
if key not in self:
self[key] = val
return val
return self[key]
def update(self, *args, **kwargs):
# Reimplementing dict.update is tricky -- see e.g.
# http://mail.python.org/pipermail/python-ideas/2007-May/000744.html
# We just rebuild the heap from scratch after passing to super.
super(priority_dict, self).update(*args, **kwargs)
self._rebuild_heap()
def sorted_iter(self):
"""Sorted iterator of the priority dictionary items.
Beware: this will destroy elements as they are returned.
"""
while self:
yield self.pop_smallest()
VISITED_URLS_PRIOR_DICT = priority_dict(VISITED_URLS_DICT)
def allowed_to_crawl(url, host_url, scheme):
'''
url: the full url, string
host_url: the domain url, string (eg. wikipedia.org)
scheme: the communication protocol, string (eg. https)
'''
# if host URL is google, assume we are allowed to crawl
if host_url == 'google.com':
return True
# if it is not a link, return False
if host_url == '' or scheme == '':
return False
try:
# get the robots.txt
rp = RobotFileParser()
rp.set_url(scheme + "://" + host_url + "/robots.txt")
rp.read()
return rp.can_fetch("*", url)
except:
pass
return True
def mime_type_okay(url):
'''
url: the full url, string
'''
# url last 3 letters check img ,pdf ,mp4,mp3
exten = url[-3:]
cond = (exten == 'img' or exten ==
'pdf' or exten == 'mp4' or exten == 'mp3')
if cond:
return False
mime_ignore_list = ["image/mng", "image/bmp", "image/gif", "image/jpg",
"image/jpeg", "image/png", "image/pst", "image/psp",
"image/fif", "image/tiff", "image/ai", "image/drw",
"image/x-dwg", "audio/mp3", "audio/wma", "audio/mpeg",
"audio/wav", "audio/midi", "audio/mpeg3", "audio/mp4",
"audio/x-realaudio", "video/3gp", "video/avi",
"video/mov", "video/mp4", "video/mpg", "video/mpeg",
"video/wmv", "text/css", "application/x-pointplus",
"application/pdf", "application/octet-stream",
"application/x-binary", "application/zip",
"application/pdf"]
try:
session = requests.Session()
session_resp = session.head(url)
contentType = session_resp.headers['content-type']
end_len = contentType.find(';')
if contentType.split(";")[0] in mime_ignore_list:
return False
else:
return True
except Exception as e:
LOG.error("Encountered this error: " + str(e))
return False
def get_canonical(url):
# only want to find canonical links for wikipedia
# if 'wikipedia' not in url:
# return url
canonical_url = ""
try:
resp = requests.get(url)
header_url = resp.headers.get('content-type')
except Exception as e:
LOG.error(url+" is not a link")
return None
# If link is not html, don't get it
if header_url != 'html':
return None
if resp.status_code == 200 and 'html' in header_url:
soup = BeautifulSoup(resp.text, features="lxml")
canonical = soup.find("link", rel="canonical")
if canonical:
canonical_url = canonical['href']
else:
try:
og_url = soup.find("meta", property="og:url")
canonical_url = og_url['content']
except Exception as e:
LOG.error("Something is wrong. Returning the same URL")
return url
return canonical_url
def cosine_score(justSoup, size):
def compute_cosine_measure(t_dict, D):
'''
t_dict: A dictionary with frequency of query in doc,
D: number of words, an int
'''
def compute_first_term(q):
return math.log(1 + (N_SIZE/QUERY_SIZE_DICT[q]))
def compute_second_term(q):
# if the frequency is 0, return 0
if t_dict[q] == 0:
return 0
else:
return 1 + math.log(t_dict[q])
res = 0
for q in QUERY.split(' '):
first_term = compute_first_term(q)
second_term = compute_second_term(q)
try:
doc_size = math.sqrt(abs(D))
res += (first_term * second_term) / doc_size
except Exception as e:
LOG.error("Size of the document is None. Setting it to 0...")
res += 0
return res
query_weight_each_doc = {}
for q in QUERY.split(' '):
total_count = 0
synonym_total_count = 0
if size is not None:
query_count = justSoup.get_text().lower().count(q.lower())
total_count += query_count
for value in QUERY_SIMILAR[q]:
synonym_total_count += justSoup.get_text().lower().count(value.lower())
synonym_total_count *= 0.5
total_count += synonym_total_count
query_weight_each_doc[q] = total_count
else:
query_weight_each_doc[q] = total_count
D = len(justSoup.get_text().split())
return compute_cosine_measure(query_weight_each_doc, D)
def estimate_promise(cosine_parent, curr_hyper_text, curr_link, ml):
'''
cosine_parent: cosine score of the parent, a float
curr_hyper_text: hyperlink text of the child, a string
curr_link: link of the child, a string
'''
total_text = len(curr_hyper_text.split())
total_link_length = len(curr_link.split('/'))
res = 0
for q in QUERY.split(' '):
q_in_hyper_text = curr_hyper_text.lower().count(q.lower())
q_in_curr_link = curr_link.lower().count(q.lower())
q_syn_hyper_count = 0
q_syn_curr_count = 0
for value in QUERY_SIMILAR[q]:
q_syn_hyper_count += curr_hyper_text.lower().count(value.lower())
q_syn_curr_count += curr_link.lower().count(value.lower())
q_syn_hyper_count *= 0.5
q_syn_curr_count *= 0.5
idf_for_all = math.log2(N_SIZE/QUERY_SIZE_DICT[q])
if total_text == 0:
q_divide_hyper_text = 0 # tf
q_syn_divide_hyper_text = 0
else:
q_divide_hyper_text = q_in_hyper_text/total_text # tf
q_syn_divide_hyper_text = q_syn_hyper_count/total_text
# q_divide_hyper_text *= idf_for_all
if total_link_length == 0:
q_divide_curr_link = 0
q_syn_divide_curr_link = 0
else:
q_divide_curr_link = q_in_curr_link/total_link_length
q_syn_divide_curr_link = q_syn_curr_count/total_link_length
res += (q_divide_hyper_text + q_divide_curr_link +
q_syn_divide_curr_link + q_syn_divide_curr_link)
int_promise = res * cosine_parent
if ml == 'True':
try:
loaded_model = pickle.load(
open('best_svr_model.sav', 'rb'))
arr = np.array([cosine_parent, q_in_hyper_text, q_syn_hyper_count, total_text,
q_in_curr_link, q_syn_curr_count, total_link_length]).reshape(1, -1)
# arr = np.array([int_promise/cosine_parent,
# cosine_parent]).reshape(1, -1)
promise = float(loaded_model.predict(arr))
except Exception as e:
LOG.error("Encountered Error: " + str(e))
LOG.error("int_promise: "+str(int_promise) +
" cosine_parent: "+str(cosine_parent))
promise = int_promise
else:
promise = int_promise
return promise, [q_in_hyper_text, q_syn_hyper_count, total_text, q_in_curr_link, q_syn_curr_count, total_link_length]
def compute_harvest_score(cosine_list):
threshold = np.nanmedian(cosine_list[:8])
print("Threshold", threshold)
relv_pages = 0
for i in range(0, len(cosine_list)):
if cosine_list[i] >= threshold:
relv_pages += 1
print("# of Relevant Pages:", relv_pages)
print("Total Pages Crawled:", len(cosine_list))
harv_score = relv_pages / len(cosine_list)
return harv_score
def get_element_from_url(url):
'''
url: a string which contains the full URL,
returns justSoup, the text stored in the URL
'''
host_url = urlparse(url).netloc
scheme = urlparse(url).scheme
cond = (allowed_to_crawl(url, host_url, scheme) and mime_type_okay(url))
if cond:
try:
res = requests.get(url)
except Exception as e:
LOG.error(url+" is not a link")
return None, None
# extracting the text within the URL #.encode('utf-8').strip()
justSoup = BeautifulSoup(res.text, features="lxml")
return res, justSoup
else:
return None, None
def get_current_url_info(res, justSoup):
'''
res: request of the URL,
justSoup: BeautifulSoup constructor of the URL
returns list of current_url_info
'''
curr_url_info_list = []
current_time = str(datetime.datetime.now())
curr_url_info_list.append(current_time)
if res is None or justSoup is None:
curr_url_info_list.append(float('nan'))
curr_url_info_list.append(float('nan'))
curr_url_info_list.append(float('nan'))
else:
size = res.headers.get('Content-Length')
curr_url_info_list.append(size)
status_code = res.status_code
curr_url_info_list.append(status_code)
c_score = cosine_score(justSoup, size)
curr_url_info_list.append(c_score)
return curr_url_info_list
def get_parent_child_info(url, starting_regex, google, depth, top_ten):
'''
input:\n
url - Complete URL, should be a string \n
starting_regex - Reg expression from where the link should start,a string\n
google - To indicate whether to fetch from Google, a boolean
returns:\n
all_urls - the URLS on the Google Search Result, a list \n
urls_info - Related info to the URLs, a list
'''
def get_google_results(justSoup, starting_regex):
'''
'''
urls_list = []
urls_info = []
# select only the Google Search Links
only_res = justSoup.select('.r a')
# Iterating over the Google Search Links
for link in only_res:
# If the link starts with the specified reg. expression
if link.get('href').startswith(starting_regex):
# extract link that starts from http and ends before &sa
start_log = link.get('href').find('http')
end_log = link.get('href').find('&sa')
norm_link = url_normalize(
link.get('href')[start_log:end_log])
# append the link to the only_urls list
urls_list.append(norm_link)
# Also append the hyperlink text and the depth
hyperlink_text = link.text.encode('utf-8').strip()
# None -> estimated promise
urls_info.append((hyperlink_text, depth + 1, None))
return urls_list, urls_info
def get_other_results(justSoup, depth, cos_par, top_ten, url_par):
def return_top_10(inner_heap, ranging_len):
top_urls = []
top_info = []
for i in range(0, ranging_len):
# -est_promise, next(COUNTER), norm_link, csv_all_info, child_depth, cos_par, [url_par]
top_prom, top_counter, top_link, top_csv_info, top_depth, top_cos_par, top_parents = heapq.heappop(
inner_heap)
if top_link in VISITED_URLS_PRIOR_DICT.keys():
VISITED_URLS_PRIOR_DICT[top_link][0] = top_prom
else:
top_urls.append(top_link)
top_info.append((top_csv_info, top_depth, top_prom))
heap_dict = [top_prom, top_counter, top_csv_info,
top_depth, top_cos_par, top_parents]
VISITED_URLS_PRIOR_DICT[top_link] = heap_dict
# top_link = get_canonical(top_link)
# if top_link in top_urls or top_link is None:
# continue
# top_urls.append(top_link)
# top_info.append((decoded_text, top_depth, top_prom))
return top_urls, top_info
urls_list = []
urls_info = []
heap_list = []
inner_heap = []
for link in justSoup.find_all('a'):
# adding new content
child_depth = depth
try:
norm_link = url_normalize(urljoin(url_par, link.get('href')))
except Exception as e:
LOG.error(
"Some Encoding Error because URL link is too long: "+str(e))
LOG.error("Don't worry! Dealing with it!")
# norm_link = link.get('href')
continue
if urlparse(norm_link).netloc == urlparse(url_par).netloc:
child_depth += 1
if child_depth > 5:
continue
# Prototype code
new_cosine = cos_par
if norm_link in VISITED_URLS_PRIOR_DICT.keys():
if url_par in VISITED_URLS_PRIOR_DICT[norm_link][-1]:
continue
else:
VISITED_URLS_PRIOR_DICT[norm_link][-1].append(url_par)
old_cosine = VISITED_URLS_PRIOR_DICT[norm_link][-2]
length_cosine = len(VISITED_URLS_PRIOR_DICT[norm_link][-1])
new_cosine = old_cosine + \
((cos_par - old_cosine)/length_cosine)
VISITED_URLS_PRIOR_DICT[norm_link][-2] = new_cosine
encoded_text = link.text.encode('utf-8').strip()
decoded_text = encoded_text.decode('utf-8').strip()
if cos_par == new_cosine:
est_promise, csv_all_info = estimate_promise(
cos_par, decoded_text, norm_link, ml=RUN_ML)
else:
est_promise, csv_all_info = estimate_promise(
new_cosine, decoded_text, norm_link, ml=RUN_ML)
inner_tuple = (-est_promise, next(COUNTER), norm_link,
csv_all_info, child_depth, cos_par, [url_par])
heapq.heappush(inner_heap, inner_tuple)
urls_list.append(norm_link)
urls_info.append((decoded_text, child_depth, est_promise))
heap_list.append([-est_promise, next(COUNTER),
csv_all_info, child_depth, cos_par, [url_par]])
# Prototype code
# if norm_link in VISITED_URLS_PRIOR_DICT.keys():
# VISITED_URLS_PRIOR_DICT[norm_link][0] = -est_promise
# else:
# urls_list.append(norm_link)
# urls_info.append((decoded_text, child_depth, est_promise))
# heap_list = [-est_promise,
# next(COUNTER), csv_all_info, child_depth, cos_par, [url_par]]
# VISITED_URLS_PRIOR_DICT[norm_link] = heap_list
if top_ten:
try:
min_ranging_len = min(len(urls_list), 10)
except Exception as e:
min_ranging_len = 0
return return_top_10(inner_heap, min_ranging_len)
return urls_list, urls_info
res, justSoup = get_element_from_url(url)
current_link_info = get_current_url_info(res, justSoup)
print("Current Link Info:", current_link_info)
if res is None or justSoup is None:
return None, None, current_link_info
# if the current URL is google
if google is True:
child_links, child_info = get_google_results(justSoup, starting_regex)
else:
cos_par = current_link_info[-1]
print("Cos Par:", cos_par)
child_links, child_info = get_other_results(
justSoup, depth, cos_par, top_ten, url)
return child_links, child_info, current_link_info
def get_google_search_urls(query):
'''
input:\n
query - User-Defined query, should be a string
returns:\n
all_urls - the URLS on the Google Search Result, a list \n
urls_info - Related info to the URLs, a list
'''
url = url_normalize(BASE_URL+query)
all_urls, urls_info, par_urls_info = get_parent_child_info(
url, starting_regex='/url?q=', google=True, depth=0, top_ten=False)
for sw in STOP_WORDS:
front, back = 0, len(all_urls) - 1
while front < back:
if sw in all_urls[front]:
del all_urls[front]
del urls_info[front]
back -= 1
else:
front += 1
# New Code
for url, url_info in zip(all_urls, urls_info):
heap_list = [float('-inf'), next(COUNTER),
url_info[0], url_info[1], par_urls_info[2], []]
VISITED_URLS_PRIOR_DICT[url] = heap_list
return all_urls, urls_info
def run_focused():
start_time = datetime.datetime.now()
counter = itertools.count()
# seed_info will have (hyperlink text, depth, cosine score)
get_google_search_urls(QUERY)
cosine_list = []
while len(VISITED_URLS_PRIOR_DICT) > 0 and len(VISITED_URLS) < N:
# Prototype code
pop_list = VISITED_URLS_PRIOR_DICT[VISITED_URLS_PRIOR_DICT.smallest()]
p_prom, p_tiebreaker, p_hyperlink, p_depth, p_p_c_score, list_of_ps = pop_list
print("Before: ", len(VISITED_URLS_PRIOR_DICT))
p_url = VISITED_URLS_PRIOR_DICT.pop_smallest()
print("After: ", len(VISITED_URLS_PRIOR_DICT))
if p_url in VISITED_URLS:
print("Link already Crawled! Skipping...")
print("----")
continue
print("Current URL:", p_url)
print("Current URL's Promise & Counter & depth:",
p_prom, p_tiebreaker, p_depth)
print("Current URL's Hyperlink related info:", p_hyperlink)
child_pages, child_info, parent_info = get_parent_child_info(
p_url, '', False, p_depth, top_ten=True)
prev_len = len(VISITED_URLS)
VISITED_URLS.add(p_url)
new_len = len(VISITED_URLS)
if new_len > prev_len:
cosine_list.append(parent_info[-1])
with open(crawler_to_run+'_'+QUERY+'.txt', 'a+') as log_file:
log_file.write(
'------------------------------------------------\n')
log_file.write('# No: '+str(len(VISITED_URLS))+'\n')
log_file.write('URL: '+str(p_url)+'\n')
log_file.write('Time Crawled: '+str(parent_info[0])+'\n')
log_file.write('Size of the Page: '+str(parent_info[1])+'\n')
log_file.write('Status Code: '+str(parent_info[2])+'\n')
log_file.write('Avg Cosine Score of Parents: ' +
str(p_p_c_score)+'\n')
log_file.write('Estimated Promise: '+str(p_prom)+'\n')
log_file.write('Cosine Relevance Score: '+str(parent_info[3])+'\n')
# CSV Info
if p_prom != float('-inf'):
with open(crawler_to_run+'_wse_training.csv', 'a+') as file:
file.write(str(p_url)) # writing URL name
file.write(',')
# writing average cosine of parents
file.write(str(p_p_c_score))
file.write(',')
file.write(str(p_hyperlink[0]))
file.write(',')
file.write(str(p_hyperlink[1]))
file.write(',')
file.write(str(p_hyperlink[2]))
file.write(',')
file.write(str(p_hyperlink[3]))
file.write(',')
file.write(str(p_hyperlink[4]))
file.write(',')
file.write(str(p_hyperlink[5]))
file.write(',')
# for i in p_hyperlink: # writing frequency related info
# file.write(str(i))
# file.write(',')
file.write(str(parent_info[-1])) # writing actual cosine
file.write('\n')
print("# Links Visited:", len(VISITED_URLS))
print("----")
if child_pages is None:
continue
end_time = datetime.datetime.now()
time_elapsed = end_time - start_time
print("Crawling Finished!")
harv_score = compute_harvest_score(cosine_list)
print("Harvest Score:", harv_score)
print("Debugging starts!!")
print("Total links in this dict:", len(VISITED_URLS_PRIOR_DICT))
with open(crawler_to_run+'_'+QUERY+'.txt', 'a+') as log_file:
log_file.write('\n\n')
log_file.write('#### Statistics ####'+'\n\n')
log_file.write('Crawl Start Time: '+str(start_time)+'\n')
log_file.write('Crawl End Time: '+str(end_time)+'\n')
log_file.write('Time it took to Crawl: '+str(time_elapsed)+'\n')
log_file.write('Harvest Score: '+str(harv_score)+'\n')
run_focused()