-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
114 lines (95 loc) · 3.67 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
from data import FoodData
from model.utils import *
from model.model import ThreeStageNetwork
from sklearn.preprocessing import LabelEncoder
from tqdm.auto import tqdm
import psutil
from io import BytesIO
import copy
class NewData(torch.utils.data.Dataset):
def __init__(self, h5_path=None, transform=None):
"""
Inputs:
h5_path (Str): specifying path of HDF5 file to load
transform (torch transforms): if None is skipped, otherwise torch
applies transforms
"""
self.transform = transform
self.im_paths = copy.deepcopy(image_paths)
self.labels = copy.deepcopy(labels)
def __getitem__(self, index):
"""
Method for pulling images and labels from the initialized HDF5 file
"""
X = Image.open(self.im_paths[index]).convert("RGB")
y = self.labels[index]
if self.transform is not None:
X = self.transform(X)
return X, y
def __len__(self):
return len(self.labels)
if __name__ == '__main__':
# prepare the experiment
prepare_experiment()
path = "larger_data/"
directories = os.listdir(path)
image_paths = []
categories = []
# this checks for broken images by trying to open them first
for directory in tqdm(directories):
ims = os.listdir(path + directory)
for im in ims:
if im.split(".")[-1] in ["jpg", "png", "jpeg"]:
try:
im2 = Image.open(path + directory + "/" + im)
image_paths.append(path + directory + "/" + im)
categories.append(directory)
except:
os.remove(path + directory + "/" + im)
# now make encoded labels
le = LabelEncoder()
le.fit(categories)
labels = le.transform(categories)
print(len(labels))
# build the model
model = ThreeStageNetwork(num_classes=len(np.unique(labels)),
trunk_architecture="efficientnet-b0",
trunk_optim="adamW",
embedder_optim="adamW",
classifier_optim="adamW",
trunk_lr=1e-4,
embedder_lr=3e-3,
classifier_lr=3e-3,
weight_decay=0.1,
trunk_decay=0.95,
embedder_decay=0.95,
classifier_decay=0.95,
log_train=True)
#model.load_weights("models/models.h5", load_classifier=True, load_optimizers=False)
model.setup_data(dataset=NewData,
batch_size=1024,
load_indices=False,
num_workers=8,
M=4,
labels=labels,
indices_path="logs/data_indices.npz",
train_split=0.95)
print(len(model.labels))
print(len(np.unique(model.labels)))
print(len(model.train_indices))
model.train(n_epochs=25,
loss_ratios=[10,5,0.2,5],
class_weighting=False,
epoch_train=False,
epoch_val=True)
try:
# let's get the embeddings and save those too for some visualization
model.save_all_logits_embeds("logs/logits_embeds.npz")
except:
pass
# finish experiment and zip up
experiment_id = zip_files(["models", "logs"],
experiment_id="b0_593_new")
upload_to_s3(file_name=f"experiment_{experiment_id}.zip",
destination=None,
bucket="msc-thesis")