Skip to content

Latest commit

 

History

History
218 lines (187 loc) · 6.31 KB

File metadata and controls

218 lines (187 loc) · 6.31 KB

中文文档

Description

A robot on an infinite XY-plane starts at point (0, 0) facing north. The robot can receive a sequence of these three possible types of commands:

  • -2: Turn left 90 degrees.
  • -1: Turn right 90 degrees.
  • 1 <= k <= 9: Move forward k units, one unit at a time.

Some of the grid squares are obstacles. The ith obstacle is at grid point obstacles[i] = (xi, yi). If the robot runs into an obstacle, then it will instead stay in its current location and move on to the next command.

Return the maximum Euclidean distance that the robot ever gets from the origin squared (i.e. if the distance is 5, return 25).

Note:

  • North means +Y direction.
  • East means +X direction.
  • South means -Y direction.
  • West means -X direction.

 

Example 1:

Input: commands = [4,-1,3], obstacles = []
Output: 25
Explanation: The robot starts at (0, 0):
1. Move north 4 units to (0, 4).
2. Turn right.
3. Move east 3 units to (3, 4).
The furthest point the robot ever gets from the origin is (3, 4), which squared is 32 + 42 = 25 units away.

Example 2:

Input: commands = [4,-1,4,-2,4], obstacles = [[2,4]]
Output: 65
Explanation: The robot starts at (0, 0):
1. Move north 4 units to (0, 4).
2. Turn right.
3. Move east 1 unit and get blocked by the obstacle at (2, 4), robot is at (1, 4).
4. Turn left.
5. Move north 4 units to (1, 8).
The furthest point the robot ever gets from the origin is (1, 8), which squared is 12 + 82 = 65 units away.

Example 3:

Input: commands = [6,-1,-1,6], obstacles = []
Output: 36
Explanation: The robot starts at (0, 0):
1. Move north 6 units to (0, 6).
2. Turn right.
3. Turn right.
4. Move south 6 units to (0, 0).
The furthest point the robot ever gets from the origin is (0, 6), which squared is 62 = 36 units away.

 

Constraints:

  • 1 <= commands.length <= 104
  • commands[i] is either -2, -1, or an integer in the range [1, 9].
  • 0 <= obstacles.length <= 104
  • -3 * 104 <= xi, yi <= 3 * 104
  • The answer is guaranteed to be less than 231.

Solutions

Python3

class Solution:
    def robotSim(self, commands: List[int], obstacles: List[List[int]]) -> int:
        dirs = [[-1, 0], [0, 1], [1, 0], [0, -1]]
        s = {(x, y) for x, y in obstacles}
        ans, p = 0, 1
        x = y = 0
        for v in commands:
            if v == -2:
                p = (p + 3) % 4
            elif v == -1:
                p = (p + 1) % 4
            else:
                for _ in range(v):
                    nx, ny = x + dirs[p][0], y + dirs[p][1]
                    if (nx, ny) in s:
                        break
                    x, y = nx, ny
                    ans = max(ans, x * x + y * y)
        return ans

Java

class Solution {
    public int robotSim(int[] commands, int[][] obstacles) {
        int[][] dirs = {{-1, 0}, {0, 1}, {1, 0}, {0, -1}};
        Set<String> s = new HashSet<>();
        for (int[] v : obstacles) {
            s.add(v[0] + "." + v[1]);
        }
        int ans = 0, p = 1;
        int x = 0, y = 0;
        for (int v : commands) {
            if (v == -2) {
                p = (p + 3) % 4;
            } else if (v == -1) {
                p = (p + 1) % 4;
            } else {
                while (v-- > 0) {
                    int nx = x + dirs[p][0], ny = y + dirs[p][1];
                    if (s.contains(nx + "." + ny)) {
                        break;
                    }
                    x = nx;
                    y = ny;
                    ans = Math.max(ans, x * x + y * y);
                }
            }
        }
        return ans;
    }
}

C++

class Solution {
public:
    int robotSim(vector<int>& commands, vector<vector<int>>& obstacles) {
        vector<vector<int>> dirs = {{-1, 0}, {0, 1}, {1, 0}, {0, -1}};
        unordered_set<string> s;
        for (auto v : obstacles) s.insert(to_string(v[0]) + "." + to_string(v[1]));
        int ans = 0, p = 1;
        int x = 0, y = 0;
        for (int v : commands) {
            if (v == -2)
                p = (p + 3) % 4;
            else if (v == -1)
                p = (p + 1) % 4;
            else {
                while (v--) {
                    int nx = x + dirs[p][0], ny = y + dirs[p][1];
                    if (s.count(to_string(nx) + "." + to_string(ny))) break;
                    x = nx;
                    y = ny;
                    ans = max(ans, x * x + y * y);
                }
            }
        }
        return ans;
    }
};

Go

func robotSim(commands []int, obstacles [][]int) int {
	dirs := [][]int{{-1, 0}, {0, 1}, {1, 0}, {0, -1}}
	s := map[string]bool{}
	for _, v := range obstacles {
		t := strconv.Itoa(v[0]) + "." + strconv.Itoa(v[1])
		s[t] = true
	}
	ans, p := 0, 1
	x, y := 0, 0
	for _, v := range commands {
		if v == -2 {
			p = (p + 3) % 4
		} else if v == -1 {
			p = (p + 1) % 4
		} else {
			for i := 0; i < v; i++ {
				nx, ny := x+dirs[p][0], y+dirs[p][1]
				t := strconv.Itoa(nx) + "." + strconv.Itoa(ny)
				if s[t] {
					break
				}
				x, y = nx, ny
				ans = max(ans, x*x+y*y)
			}
		}
	}
	return ans
}

func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}

...