-
Notifications
You must be signed in to change notification settings - Fork 891
/
ocr_app.py
262 lines (207 loc) · 10.1 KB
/
ocr_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import io
from typing import List
import pypdfium2
import streamlit as st
from pypdfium2 import PdfiumError
from surya.detection import batch_text_detection
from surya.input.pdflines import get_page_text_lines, get_table_blocks
from surya.layout import batch_layout_detection
from surya.model.detection.model import load_model, load_processor
from surya.model.layout.model import load_model as load_layout_model, load_processor as load_layout_processor
from surya.model.recognition.model import load_model as load_rec_model
from surya.model.recognition.processor import load_processor as load_rec_processor
from surya.model.ordering.processor import load_processor as load_order_processor
from surya.model.ordering.model import load_model as load_order_model
from surya.model.table_rec.model import load_model as load_table_model
from surya.model.table_rec.processor import load_processor as load_table_processor
from surya.ordering import batch_ordering
from surya.postprocessing.heatmap import draw_polys_on_image, draw_bboxes_on_image
from surya.ocr import run_ocr
from surya.postprocessing.text import draw_text_on_image
from PIL import Image
from surya.languages import CODE_TO_LANGUAGE
from surya.input.langs import replace_lang_with_code
from surya.schema import OCRResult, TextDetectionResult, LayoutResult, OrderResult, TableResult
from surya.settings import settings
from surya.tables import batch_table_recognition
from surya.postprocessing.util import rescale_bboxes, rescale_bbox
@st.cache_resource()
def load_det_cached():
return load_model(), load_processor()
@st.cache_resource()
def load_rec_cached():
return load_rec_model(), load_rec_processor()
@st.cache_resource()
def load_layout_cached():
return load_layout_model(), load_layout_processor()
@st.cache_resource()
def load_order_cached():
return load_order_model(), load_order_processor()
@st.cache_resource()
def load_table_cached():
return load_table_model(), load_table_processor()
def text_detection(img) -> (Image.Image, TextDetectionResult):
pred = batch_text_detection([img], det_model, det_processor)[0]
polygons = [p.polygon for p in pred.bboxes]
det_img = draw_polys_on_image(polygons, img.copy())
return det_img, pred
def layout_detection(img) -> (Image.Image, LayoutResult):
_, det_pred = text_detection(img)
pred = batch_layout_detection([img], layout_model, layout_processor, [det_pred])[0]
polygons = [p.polygon for p in pred.bboxes]
labels = [p.label for p in pred.bboxes]
layout_img = draw_polys_on_image(polygons, img.copy(), labels=labels, label_font_size=18)
return layout_img, pred
def order_detection(img) -> (Image.Image, OrderResult):
_, layout_pred = layout_detection(img)
bboxes = [l.bbox for l in layout_pred.bboxes]
pred = batch_ordering([img], [bboxes], order_model, order_processor)[0]
polys = [l.polygon for l in pred.bboxes]
positions = [str(l.position) for l in pred.bboxes]
order_img = draw_polys_on_image(polys, img.copy(), labels=positions, label_font_size=18)
return order_img, pred
def table_recognition(img, highres_img, filepath, page_idx: int, use_pdf_boxes: bool, skip_table_detection: bool) -> (Image.Image, List[TableResult]):
if skip_table_detection:
layout_tables = [(0, 0, highres_img.size[0], highres_img.size[1])]
table_imgs = [highres_img]
else:
_, layout_pred = layout_detection(img)
layout_tables_lowres = [l.bbox for l in layout_pred.bboxes if l.label == "Table"]
table_imgs = []
layout_tables = []
for tb in layout_tables_lowres:
highres_bbox = rescale_bbox(tb, img.size, highres_img.size)
table_imgs.append(
highres_img.crop(highres_bbox)
)
layout_tables.append(highres_bbox)
try:
page_text = get_page_text_lines(filepath, [page_idx], [highres_img.size])[0]
table_bboxes = get_table_blocks(layout_tables, page_text, highres_img.size)
except PdfiumError:
# This happens when we try to get text from an image
table_bboxes = [[] for _ in layout_tables]
if not use_pdf_boxes or any(len(tb) == 0 for tb in table_bboxes):
det_results = batch_text_detection(table_imgs, det_model, det_processor)
table_bboxes = [[{"bbox": tb.bbox, "text": None} for tb in det_result.bboxes] for det_result in det_results]
table_preds = batch_table_recognition(table_imgs, table_bboxes, table_model, table_processor)
table_img = img.copy()
for results, table_bbox in zip(table_preds, layout_tables):
adjusted_bboxes = []
labels = []
colors = []
for item in results.rows + results.cols:
adjusted_bboxes.append([
(item.bbox[0] + table_bbox[0]),
(item.bbox[1] + table_bbox[1]),
(item.bbox[2] + table_bbox[0]),
(item.bbox[3] + table_bbox[1])
])
labels.append(item.label)
if hasattr(item, "row_id"):
colors.append("blue")
else:
colors.append("red")
table_img = draw_bboxes_on_image(adjusted_bboxes, highres_img, labels=labels, label_font_size=18, color=colors)
return table_img, table_preds
# Function for OCR
def ocr(img, highres_img, langs: List[str]) -> (Image.Image, OCRResult):
replace_lang_with_code(langs)
img_pred = run_ocr([img], [langs], det_model, det_processor, rec_model, rec_processor, highres_images=[highres_img])[0]
bboxes = [l.bbox for l in img_pred.text_lines]
text = [l.text for l in img_pred.text_lines]
rec_img = draw_text_on_image(bboxes, text, img.size, langs, has_math="_math" in langs)
return rec_img, img_pred
def open_pdf(pdf_file):
stream = io.BytesIO(pdf_file.getvalue())
return pypdfium2.PdfDocument(stream)
@st.cache_data()
def get_page_image(pdf_file, page_num, dpi=settings.IMAGE_DPI):
doc = open_pdf(pdf_file)
renderer = doc.render(
pypdfium2.PdfBitmap.to_pil,
page_indices=[page_num - 1],
scale=dpi / 72,
)
png = list(renderer)[0]
png_image = png.convert("RGB")
return png_image
@st.cache_data()
def page_count(pdf_file):
doc = open_pdf(pdf_file)
return len(doc)
st.set_page_config(layout="wide")
col1, col2 = st.columns([.5, .5])
det_model, det_processor = load_det_cached()
rec_model, rec_processor = load_rec_cached()
layout_model, layout_processor = load_layout_cached()
order_model, order_processor = load_order_cached()
table_model, table_processor = load_table_cached()
st.markdown("""
# Surya OCR Demo
This app will let you try surya, a multilingual OCR model. It supports text detection + layout analysis in any language, and text recognition in 90+ languages.
Notes:
- This works best on documents with printed text.
- Preprocessing the image (e.g. increasing contrast) can improve results.
- If OCR doesn't work, try changing the resolution of your image (increase if below 2048px width, otherwise decrease).
- This supports 90+ languages, see [here](https://github.com/VikParuchuri/surya/tree/master/surya/languages.py) for a full list.
Find the project [here](https://github.com/VikParuchuri/surya).
""")
in_file = st.sidebar.file_uploader("PDF file or image:", type=["pdf", "png", "jpg", "jpeg", "gif", "webp"])
languages = st.sidebar.multiselect("Languages", sorted(list(CODE_TO_LANGUAGE.values())), default=[], max_selections=4, help="Select the languages in the image (if known) to improve OCR accuracy. Optional.")
if in_file is None:
st.stop()
filetype = in_file.type
whole_image = False
if "pdf" in filetype:
page_count = page_count(in_file)
page_number = st.sidebar.number_input(f"Page number out of {page_count}:", min_value=1, value=1, max_value=page_count)
pil_image = get_page_image(in_file, page_number, settings.IMAGE_DPI)
pil_image_highres = get_page_image(in_file, page_number, dpi=settings.IMAGE_DPI_HIGHRES)
else:
pil_image = Image.open(in_file).convert("RGB")
pil_image_highres = pil_image
page_number = None
text_det = st.sidebar.button("Run Text Detection")
text_rec = st.sidebar.button("Run OCR")
layout_det = st.sidebar.button("Run Layout Analysis")
order_det = st.sidebar.button("Run Reading Order")
table_rec = st.sidebar.button("Run Table Rec")
use_pdf_boxes = st.sidebar.checkbox("PDF table boxes", value=True, help="Table recognition only: Use the bounding boxes from the PDF file vs text detection model.")
skip_table_detection = st.sidebar.checkbox("Skip table detection", value=False, help="Table recognition only: Skip table detection and treat the whole image/page as a table.")
if pil_image is None:
st.stop()
# Run Text Detection
if text_det:
det_img, pred = text_detection(pil_image)
with col1:
st.image(det_img, caption="Detected Text", use_column_width=True)
st.json(pred.model_dump(exclude=["heatmap", "affinity_map"]), expanded=True)
# Run layout
if layout_det:
layout_img, pred = layout_detection(pil_image)
with col1:
st.image(layout_img, caption="Detected Layout", use_column_width=True)
st.json(pred.model_dump(exclude=["segmentation_map"]), expanded=True)
# Run OCR
if text_rec:
rec_img, pred = ocr(pil_image, pil_image_highres, languages)
with col1:
st.image(rec_img, caption="OCR Result", use_column_width=True)
json_tab, text_tab = st.tabs(["JSON", "Text Lines (for debugging)"])
with json_tab:
st.json(pred.model_dump(), expanded=True)
with text_tab:
st.text("\n".join([p.text for p in pred.text_lines]))
if order_det:
order_img, pred = order_detection(pil_image)
with col1:
st.image(order_img, caption="Reading Order", use_column_width=True)
st.json(pred.model_dump(), expanded=True)
if table_rec:
table_img, pred = table_recognition(pil_image, pil_image_highres, in_file, page_number - 1 if page_number else None, use_pdf_boxes, skip_table_detection)
with col1:
st.image(table_img, caption="Table Recognition", use_column_width=True)
st.json([p.model_dump() for p in pred], expanded=True)
with col2:
st.image(pil_image, caption="Uploaded Image", use_column_width=True)