-
Notifications
You must be signed in to change notification settings - Fork 182
/
triton_kernel.py
205 lines (180 loc) · 7.07 KB
/
triton_kernel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import math
from typing import Optional
import torch
import triton
import triton.language as tl
from torch.autograd import Function
@triton.autotune(
configs=[
triton.Config({"UNUSED": 1}, num_stages=num_stages, num_warps=num_warps)
for num_stages in (1, 2, 3, 4, 5)
for num_warps in (1, 2, 4, 8)
],
key=[
"in_features",
"out_features",
"num_codebooks",
"codebook_size",
"out_group_size",
"in_group_size",
"num_input_groups",
"num_input_groups_next_power_of_2",
"compute_in_fp32",
"has_output_scale",
"has_bias",
],
)
@triton.jit
def _aqlm_gemv_simple(
input_vec_ptr,
output_vec_ptr,
codes_ptr,
codebooks_ptr,
scales_ptr,
bias_ptr,
in_features: tl.constexpr,
out_features: tl.constexpr,
num_codebooks: tl.constexpr,
codebook_size: tl.constexpr,
out_group_size: tl.constexpr,
in_group_size: tl.constexpr,
num_input_groups: tl.constexpr,
num_input_groups_next_power_of_2: tl.constexpr,
compute_in_fp32: tl.constexpr,
has_output_scale: tl.constexpr,
has_bias: tl.constexpr,
UNUSED: tl.constexpr,
):
# variables ending with "_i" mean "for i-th output unit"
pid = tl.program_id(axis=0) # [0, 1, ... {num_out_groups-1}]
# Stage 1: load input data
input_vec = tl.load(
input_vec_ptr
+ tl.arange(0, num_input_groups_next_power_of_2)[:, None, None, None] * in_group_size
+ tl.arange(0, in_group_size)[None, None, None, :],
mask=tl.arange(0, num_input_groups_next_power_of_2)[:, None, None, None] < num_input_groups,
)
# [in_features//in_group_size, 1, 1, group_size]
# Note: we could simply load input_vec then reshape
# input_vec = tl.load(input_vec_ptr + tl.arange(0, in_features)) # [in_features]
# input_vec = tl.view(input_vec, [num_input_groups, 1, in_group_size])
# , but this does not work because tl.view may reorder elements arbitrarily; see its docstring
dtype = input_vec.dtype
# Stage 2: load integer codes for the active row
# [in_features // in_group_size, num_codebooks]
codes_i_ptrs = (
codes_ptr
+ pid * num_input_groups * num_codebooks
+ tl.arange(0, num_input_groups_next_power_of_2)[:, None] * num_codebooks
+ tl.arange(0, num_codebooks)[None, :]
)
codes_i_mask_1d = tl.arange(0, num_input_groups_next_power_of_2) < num_input_groups
codes_i = tl.load(codes_i_ptrs, mask=codes_i_mask_1d[:, None]) # [in_features//in_group_size, num_codebooks]
codes_i = codes_i.to(tl.int32)
codes_i = (codes_i) + (codes_i < 0) * codebook_size # aka 2 ** nbits_per_codebook
# ^-- (because codes are int16 tensors that contain uint data)
# The following alternative does not work:
# codes_i = codes_i.to(tl.int32) % codebook_size # aka 2 ** nbits_per_codeboo
# shift codes_i so that codebooks after 0th point to correct indices in codebooks_ptr
codes_i += tl.arange(0, num_codebooks)[None, :] * codebook_size # aka 2 ** nbits_per_codebook
# ^-- [in_group_size, num_codebooks]
# Stage 3: convert codes to pointers to every individual (activated) weight in codebooks
# [in_features // in_group_size, num_codebooks, out_group_size, in_group_size]
out_group_ix = tl.arange(0, out_group_size)[None, None, :, None]
in_group_ix = tl.arange(0, in_group_size)[None, None, None, :]
weight_i_ptrs = (
codebooks_ptr
+ codes_i[:, :, None, None] * out_group_size * in_group_size
+ out_group_ix * in_group_size
+ in_group_ix
)
# Stage 4: reconstruct weights, multiply by inputs and write out
weights_i = tl.load(weight_i_ptrs, mask=codes_i_mask_1d[:, None, None, None], other=0)
if compute_in_fp32:
weights_i = weights_i.to(tl.float32)
input_vec = input_vec.to(tl.float32)
# ^-- [in_features // in_group_size, num_codebooks, out_group_size, in_group_size]
output_i = weights_i * input_vec # [in_features // in_group_size, num_codebooks, out_group_size, in_group_size]
if out_group_size == 1:
output_i = tl.sum(output_i) # []
else:
output_i = tl.sum(output_i, axis=1) # [in_features // in_group_size, out_group_size, in_group_size]
output_i = tl.sum(output_i, axis=2) # [in_features // in_group_size, out_group_size]
output_i = tl.sum(output_i, axis=0) # [out_group_size]
if has_output_scale:
output_i *= tl.load(scales_ptr + pid).to(weights_i.dtype) # scalar
if has_bias:
output_i += tl.load(bias_ptr + pid).to(weights_i.dtype)
if out_group_size == 1:
tl.store(output_vec_ptr + pid, output_i.to(dtype))
else:
tl.store(output_vec_ptr + pid * out_group_size + tl.arange(0, out_group_size), output_i.to(dtype))
def next_power_of_2(x):
return 1 if x == 0 else 2 ** math.ceil(math.log2(x))
def aqlm_gemm_stupid(
input: torch.Tensor,
codes_i16: torch.ShortTensor,
codebooks: torch.Tensor,
scales: torch.Tensor,
bias: Optional[torch.Tensor],
compute_in_fp32: bool = True,
):
device, dtype = codebooks.device, codebooks.dtype
num_codebooks, codebook_size, out_group_size, in_group_size = codebooks.shape
in_features = input.shape[1]
out_features = codes_i16.shape[0] * out_group_size
num_input_groups = codes_i16.shape[1]
assert input.ndim == 2
assert in_features % in_group_size == 0
assert codebooks.shape[1] < 2**32
if scales.shape == (out_features // out_group_size, 1, 1, 1):
has_output_scales = True
elif scales.shape == (1, in_features // in_group_size, 1, 1) and in_group_size == 1:
has_output_scales = False
input *= scales.squeeze()
else:
raise NotImplementedError(f"Can't do Triton AQLM matmul with scales of shape {scales.shape}")
if not input.is_contiguous():
raise ValueError("Input tensor must be contiguous")
output = torch.empty(input.shape[0], out_features, device=device, dtype=dtype)
for i in range(input.shape[0]):
# 1D launch kernel where each block computes output unit
grid = lambda META: (out_features // out_group_size,)
_aqlm_gemv_simple[grid](
input[i],
output[i],
codes_i16,
codebooks,
scales,
bias,
in_features,
out_features,
num_codebooks,
codebook_size,
out_group_size,
in_group_size,
num_input_groups,
next_power_of_2(num_input_groups),
compute_in_fp32,
has_output_scales,
bias is not None,
)
return output
def triton_matmul(
input: torch.Tensor,
codes: torch.IntTensor,
codebooks: torch.Tensor,
scales: torch.Tensor,
bias: Optional[torch.Tensor],
compute_in_fp32: bool = True,
) -> torch.Tensor:
input_shape = input.shape
input = input.reshape(-1, input_shape[-1])
return aqlm_gemm_stupid(
input,
codes,
codebooks,
scales,
bias,
compute_in_fp32,
).reshape(input_shape[:-1] + (-1,))