-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
332 lines (264 loc) · 13.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import gym
import math
import random
import matplotlib
import matplotlib.pyplot as plt
from collections import namedtuple, deque
from itertools import count
from pathlib import Path
import numpy as np
import pickle
import time
import platform
from envs.env_project import GridWorldEnv
import model
from utils import plot_durations, plot_loss, plot_rewards
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
# if gpu is to be used
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
steps_done = 0
def select_action(state):
'''
samples an action given a state with epsilon-greedy policy
'''
global steps_done
sample = random.random()
eps_threshold = EPS_END + (EPS_START - EPS_END) * \
math.exp(-1. * steps_done / EPS_DECAY)
steps_done += 1
if sample > eps_threshold:
with torch.no_grad():
# t.max(1) will return the largest column value of each row.
# second column on max result is index of where max element was
# found, so we pick action with the larger expected reward.
return policy_net(state).max(1)[1].view(1, 1)
else:
return torch.tensor([[env.action_space.sample()]], device=device, dtype=torch.long)
def optimize_model():
if len(memory) < BATCH_SIZE: # if memory buffer is less than BATCH_SIZE, return
return
transitions = memory.sample(BATCH_SIZE)
# Transpose the batch (see https://stackoverflow.com/a/19343/3343043 for
# detailed explanation). This converts batch-array of Transitions
# to Transition of batch-arrays.
batch = memory.Transition(*zip(*transitions))
# Compute a mask of non-final states and concatenate the batch elements
# (a final state would've been the one after which simulation ended)
non_final_mask = torch.tensor(tuple(map(lambda s: s is not None,
batch.next_state)), device=device, dtype=torch.bool)
non_final_next_states = torch.cat([s for s in batch.next_state
if s is not None])
state_batch = torch.cat(batch.state)
action_batch = torch.cat(batch.action)
reward_batch = torch.cat(batch.reward)
# Compute Q(s_t, a) - the model computes Q(s_t), then we select the
# columns of actions taken. These are the actions which would've been taken
# for each batch state according to policy_net
state_action_values = policy_net(state_batch).gather(1, action_batch)
# Compute V(s_{t+1}) for all next states.
# Expected values of actions for non_final_next_states are computed based
# on the "older" target_net; selecting their best reward with max(1)[0].
# This is merged based on the mask, such that we'll have either the expected
# state value or 0 in case the state was final.
next_state_values = torch.zeros(BATCH_SIZE, device=device)
with torch.no_grad():
next_state_values[non_final_mask] = target_net(non_final_next_states).max(1)[0]
# Compute the expected Q values
expected_state_action_values = (next_state_values * GAMMA) + reward_batch
# Compute Huber loss
criterion = nn.SmoothL1Loss()
loss = criterion(state_action_values, expected_state_action_values.unsqueeze(1))
# Optimize the model
optimizer.zero_grad()
loss.backward()
# In-place gradient clipping
torch.nn.utils.clip_grad_value_(policy_net.parameters(), 100)
optimizer.step()
# print(loss.item())
return (loss.item())
if __name__ == "__main__":
isTraining = True
isTesting = False
isSaving = True
isLogging = True
training_log = {}
hyperparams_log = {}
# define the PATHS here
# data_folder = Path("/home/vj/Link to WiSe 2022-23/Reinforcement Learning/project/Implementation")
train_data_folder = Path("/home/vj/Link to WiSe 2022-23/Reinforcement Learning/project/Implementation/datasets/data_easy/train/task")
val_data_folder = Path("/home/vj/Link to WiSe 2022-23/Reinforcement Learning/project/Implementation/datasets/data_easy/val/task")
trained_model_path = Path("/home/vj/Link to WiSe 2022-23/Reinforcement Learning/project/Implementation/model.pth")
# create the environment
env = GridWorldEnv(jsondata=train_data_folder/"0_task.json")
#### HYPER-PARAMETERS ####
BATCH_SIZE = 128 # BATCH_SIZE is the number of transitions sampled from the replay buffer
GAMMA = 0.99 # GAMMA is the discount factor as mentioned in the previous section
EPS_START = 0.9 # EPS_START is the starting value of epsilon
EPS_END = 0.05 # EPS_END is the final value of epsilon
EPS_DECAY = 1000 # EPS_DECAY controls the rate of exponential decay of epsilon, higher means a slower decay
TAU = 0.005 # TAU is the update rate of the target network
LR = 1e-4 # LR is the learning rate of the AdamW optimizer
H = 500 # H is the hyperpameter to control the lenght of the episode (to avoid infinite episode lenghts)
NUM_EPISODES = 10000 # total number of episodes to train on
# Get number of actions from gym action space
n_actions = env.action_space.n
# Get the state observations
state, info = env.reset(jsondata=train_data_folder/"0_task.json")
n_observations = len(state) # lenght of state feature
# Define the POLICY network and the TARGET network
policy_net = model.DQN(n_observations, n_actions).to(device)
target_net = model.DQN(n_observations, n_actions).to(device)
target_net.load_state_dict(policy_net.state_dict()) # copy the state of Policy net to Target net
if isTraining:
# Define the optimizer
optimizer = optim.AdamW(policy_net.parameters(), lr=LR, amsgrad=True)
# Initialize the Replay Memory
memory = model.ReplayMemory(10000)
episode_durations = []
losses = []
episode_rewards = []
#### Training loop: START ####
training_start_time = time.time()
for i_episode in range(NUM_EPISODES):
episode_loss = 0
episode_reward = 0
datapath = f'{train_data_folder}/{random.randrange(4000)}_task.json'
# Initialize the environment and get it's state
state, info = env.reset(jsondata=datapath)
state = torch.tensor(state, device=device, dtype=torch.float32).unsqueeze(0)
for t in count():
action = select_action(state)
observation, reward, terminated, _ = env.step(action.item())
reward = torch.tensor([reward])
episode_reward += int(reward)
done = terminated
if terminated:
next_state = None
else:
next_state = torch.tensor(observation, device=device, dtype=torch.float32).unsqueeze(0)
# Store the transition in memory
memory.push(state, action, next_state, reward)
# Move to the next state
state = next_state
# Perform one step of the optimization (on the policy network)
temp_loss = optimize_model()
if temp_loss:
episode_loss += optimize_model()
# Soft update of the target network's weights
# θ′ ← τ θ + (1 −τ )θ′
target_net_state_dict = target_net.state_dict()
policy_net_state_dict = policy_net.state_dict()
for key in policy_net_state_dict:
target_net_state_dict[key] = policy_net_state_dict[key]*TAU + target_net_state_dict[key]*(1-TAU)
target_net.load_state_dict(target_net_state_dict)
if done or t>H:
episode_durations.append(t + 1)
losses.append(episode_loss)
episode_rewards.append(episode_reward)
plot_durations(episode_durations)
plot_loss(losses)
plot_rewards(episode_rewards)
break
training_end_time = time.time()
# calculating metrics
avg_episode_len = np.average(np.array(episode_durations))
avg_episode_reward = np.average(np.array(episode_rewards))
avg_episode_len_clipped = np.average(np.array(episode_durations[-100:]))
avg_episode_reward_clipped = np.average(np.array(episode_rewards[-100:]))
total_training_time = training_end_time - training_start_time
avg_training_time_per_episode = total_training_time/NUM_EPISODES
print('Complete')
plot_durations(episode_durations,show_result=True)
plot_loss(losses,show_result=True)
plot_rewards(episode_rewards,show_result=True)
plt.ioff()
plt.show()
#### LOGGING THE TRAINING SPACE ####
if isSaving:
# save the model and logs on a local file
torch.save(policy_net.state_dict(),trained_model_path)
training_log['episode_durations'] = episode_durations
training_log['losses'] = losses
training_log['episode_rewards'] = episode_rewards
with open('training_log.pkl', 'wb') as f:
pickle.dump(training_log, f)
if isLogging:
# log the hyper-parameters
hyperparams_log['System_info'] = platform.uname()
if torch.cuda.is_available():
hyperparams_log['GPU_info'] = torch.cuda.get_device_name(device=device)
else:
hyperparams_log['GPU_info'] = "None"
hyperparams_log['BATCH_SIZE'] = BATCH_SIZE
hyperparams_log['GAMMA'] = GAMMA
hyperparams_log['EPS_START'] = EPS_START
hyperparams_log['EPS_END'] = EPS_END
hyperparams_log['EPS_DECAY'] = EPS_DECAY
hyperparams_log['TAU'] = TAU
hyperparams_log['LR'] = LR
hyperparams_log['H'] = H
hyperparams_log['NUM_EPISODES'] = NUM_EPISODES
hyperparams_log['avg_episode_len'] = avg_episode_len
hyperparams_log['avg_episode_reward'] = avg_episode_reward
hyperparams_log['avg_episode_len_clipped'] = avg_episode_len_clipped
hyperparams_log['avg_episode_reward_clipped'] = avg_episode_reward_clipped
hyperparams_log['total_training_time'] = total_training_time
hyperparams_log['avg_training_time_per_episode'] = avg_training_time_per_episode
hyperparams_log['POLICY_NETWORK'] = policy_net
hyperparams_log['TARGET_NETWORK'] = target_net
# hyperparams_log['training_log'] = training_log
with open('hyper_parameters_log.txt', 'a') as f:
f.write('\nNEW TRAINING\n')
for param_name,param in hyperparams_log.items():
f.write(f'{param_name}: {param}\n')
f.write('\n')
#### Training loop: END ####
if isTesting:
####### TESTING THE TRAINED MODEL OVER NEW ENVIRONMENT #######
# define the paths
datapath = f'{val_data_folder}/{random.randrange(100000,100399)}_task.json'
# outpath = f'{val_data_folder}/results/'
# Path(outpath).mkdir(parents=True, exist_ok=True)
# pathlist = Path(val_data_folder).glob()
policy_net.load_state_dict(torch.load(trained_model_path)) # copy the state of Policy net from the trained model
policy_net.eval()
solved_list = []
test_episode_rewards = []
for path in val_data_folder.iterdir():
# initialize the state for the task
state, info = env.reset(jsondata=path)
test_episode_reward = 0
# env.render() # render initial state
# env.render(toFilePath=outpath)
policy_net.load_state_dict(torch.load(trained_model_path)) # copy the state of Policy net to Target net
state = torch.tensor(state, device=device, dtype=torch.float32).unsqueeze(0)
for t in count():
action = select_action(state)
observation, reward, terminated, info = env.step(action.item())
reward = torch.tensor([reward])
test_episode_reward += reward
done = terminated
# print(action)
# env.render(toFilePath=outpath)
if terminated:
next_state = None
else:
# env.render() # render the state
next_state = torch.tensor(observation, device=device, dtype=torch.float32).unsqueeze(0)
# Move to the next state
state = next_state
if done or t>H:
if info['solved']:
print('Solved')
# else:
# # print('Crashed')
solved_list.append(info['solved'])
test_episode_rewards.append(test_episode_reward)
break
print(solved_list)
print(test_episode_rewards)
print(np.array(solved_list).sum()/len(solved_list)*100)
####### TESTING END #######