-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_shadow_models.py
112 lines (82 loc) · 3.63 KB
/
train_shadow_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import torch
from torch import nn
import numpy as np
from pathlib import Path
import pickle
from torchvision import models
import typing
from config import device
def train_shadow_models(config):
# import the shadow dataset for training
# DATA_PATH = 'amlm/pickle/cifar10/resnet34/shadow.p'
DATA_PATH = Path(str(Path.cwd())+'/datasets/'+ config['shadow_dataset'] + '/' + config['target_model'] + '/shadow.p')
with open(DATA_PATH, "rb") as f:
shadow_dataset = pickle.load(f)
train_size = int(config['split_ratio'] * len(shadow_dataset))
train_dataset, val_dataset = shadow_dataset[:train_size-1000], shadow_dataset[train_size-1000:train_size]
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=False)
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=64, shuffle=False)
if config['shadow_dataset']=='cifar10':
if config['shadow_model']=='resnet34':
shadow_model = models.resnet34(num_classes=10).to(device)
if config['shadow_model']=='mobilenetv2':
shadow_model = models.mobilenet_v2(num_classes=10).to(device)
if config['shadow_dataset']=='tinyimagenet':
if config['shadow_model']=='resnet34':
shadow_model = models.resnet34(num_classes=200).to(device)
if config['shadow_model']=='mobilenetv2':
shadow_model = models.mobilenet_v2(num_classes=200).to(device)
loss_fn = nn.CrossEntropyLoss()
# loss_fn = nn.NLLLoss()
optim = torch.optim.Adam(shadow_model.parameters(),lr=0.001,eps=1e-7) # in paper lr=0.001,
print('Training Started')
ctr_early_stop = 0
prev_acc = 0
new_acc = 0
for epoch in range(config['train_shadow_epochs']):
print(f'Training Epoch: {epoch} / ' + str(config['train_shadow_epochs']))
shadow_model.train()
for batch_idx, (img, label) in enumerate(train_dataloader):
optim.zero_grad()
img = img.to(device)
label = label.to(device)
out = shadow_model(img)
# Apply softmax to get probabilities
# predictions = torch.softmax(out, dim=1)
loss = loss_fn(out.float(),label.long())
# loss.requires_grad=True
loss.backward()
optim.step()
if not batch_idx%50:
print(f'batch completed : {batch_idx}')
print('Val begin')
total = 0
correct = 0
shadow_model.eval()
with torch.no_grad():
for _, (pos, label) in enumerate(val_dataloader):
pos = pos.to(device)
label = label.to(device)
out = shadow_model(pos)
pred = torch.argmax(out, 1)
# _, pred = torch.max(out, 1)
total += label.size(0)
correct += (pred == label).sum().item()
new_acc = 100 * correct / total
print(f'Val Accuracy of the model\nEpoch: {epoch} Acc : {new_acc} %')
# early stopping
if new_acc < prev_acc:
ctr_early_stop += 1
else:
prev_acc = new_acc
ctr_early_stop = 0
if ctr_early_stop >= 10:
print(f"EARLY STOPPING!!!!\nEpoch : {epoch}")
break
print('Training Finished')
# SAVE MODEL
SAVE_PATH = Path(str(Path.cwd()) + '/saved_shadow_models/' + config['shadow_model'] + '_' + config['shadow_dataset'] + '.pth')
torch.save(shadow_model.state_dict(), SAVE_PATH)
if __name__ == '__main__':
from config import get_config, device
train_shadow_models(get_config('task0'))