-
Notifications
You must be signed in to change notification settings - Fork 0
/
backend_manager_39.py
109 lines (88 loc) · 3.45 KB
/
backend_manager_39.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#!python
# -*- coding: utf-8 -*-
#
# Copyright 2022 Midden Vexu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# @Author:Midden Vexu
# A helper script for backend switching.
import os
import warnings
from typing import TypeAlias, Union
if "ATD_BACKEND" not in os.environ:
os.environ["ATD_BACKEND"] = "NumPy"
# makes Python 3.9 or earlier support checking if an object is belong to a typing.Union directly.
def _isinstance(obj, class_or_tuple):
try:
return original_isinstance(obj, class_or_tuple)
except TypeError:
return original_isinstance(obj, class_or_tuple.__args__)
original_isinstance = isinstance
isinstance = _isinstance
if os.environ["ATD_BACKEND"] == "NumPy":
try:
import numpy as Backend
Matrix: TypeAlias = Backend.ndarray
Decimal: TypeAlias = Union[int, float, Backend.floating, Backend.integer]
Backend.create_matrix_func = Backend.array
Backend.convert_to_matrix_func = Backend.asarray
def extend_with_000(mat: Matrix) -> Matrix:
"""
Pad 0 around the matrix.
"""
return Backend.pad(mat, ((0, 1), (0, 1)))
def extend_with_010(mat: Matrix) -> Matrix:
"""
Setting the bottom right number to 1.
"""
mat_ = extend_with_000(mat)
mat_[-1, -1] = 1
return mat_
if Backend.__version__ < "1.19.0":
warnings.warn(f"NumPy {Backend.__version__} might not work. You'd better upgrade to a newer version.",
category=ImportWarning)
except Exception:
raise ImportError("Unable to import NumPy!")
else:
print("Successfully initialized NumPy.\nUsing NumPy as Backend.")
elif os.environ["ATD_BACKEND"] == "PyTorch":
try:
import torch as Backend
import torch.nn.functional as F
from itertools import chain
Matrix: TypeAlias = Backend.Tensor
Decimal: TypeAlias = Union[int, float, Backend.FloatType, Backend.IntType]
Backend.create_matrix_func = Backend.tensor
Backend.convert_to_matrix_func = Backend.as_tensor
def extend_with_000(mat: Matrix) -> Matrix:
"""
Pad 0 around the matrix.
"""
return F.pad(mat, pad=(0, 1, 0, 1), mode="constant", value=0)
def extend_with_010(mat: Matrix) -> Matrix:
"""
Setting the bottom right number to 1.
"""
mat_ = extend_with_000(mat)
mat_[-1, -1] = 1
return mat_
if Backend.__version__ < "1.10":
warnings.warn(f"PyTorch {Backend.__version__} might not work. You'd better upgrade to a newer version.",
category=ImportWarning)
except Exception:
raise ImportError("Unable to import PyTorch!")
else:
print("Successfully initialized PyTorch.\nUsing PyTorch as Backend.")
else:
raise ImportError("The required backend is not supported!")