From 5713f859393173263cd2dd0ee9bd4658183ffb92 Mon Sep 17 00:00:00 2001 From: Raymond Baker <96847663+morphismz@users.noreply.github.com> Date: Mon, 7 Aug 2023 00:21:29 -0600 Subject: [PATCH] suspension loop space adjunction (#688) This pr contains: - definition of the underlying map of the equivalance - definition of the underlying map of the inverse Proof that these maps are in fact inverses of each other must wait until another pr since I first must formalize the dependent universal property of suspensions --- .../suspensions-of-types.lagda.md | 79 +++++++++++++++++++ 1 file changed, 79 insertions(+) diff --git a/src/synthetic-homotopy-theory/suspensions-of-types.lagda.md b/src/synthetic-homotopy-theory/suspensions-of-types.lagda.md index a59d2c3c6f..666934f169 100644 --- a/src/synthetic-homotopy-theory/suspensions-of-types.lagda.md +++ b/src/synthetic-homotopy-theory/suspensions-of-types.lagda.md @@ -19,6 +19,7 @@ open import foundation.homotopies open import foundation.identity-systems open import foundation.identity-types open import foundation.structure-identity-principle +open import foundation.transport open import foundation.type-arithmetic-dependent-pair-types open import foundation.unit-type open import foundation.universal-property-unit-type @@ -29,6 +30,8 @@ open import structured-types.pointed-maps open import structured-types.pointed-types open import synthetic-homotopy-theory.cocones-under-spans +open import synthetic-homotopy-theory.conjugation-loops +open import synthetic-homotopy-theory.functoriality-loop-spaces open import synthetic-homotopy-theory.loop-spaces open import synthetic-homotopy-theory.pushouts open import synthetic-homotopy-theory.universal-property-pushouts @@ -135,6 +138,20 @@ pr1 (suspension-Pointed-Type X) = suspension (type-Pointed-Type X) pr2 (suspension-Pointed-Type X) = N-susp ``` +#### Suspension structure induced by a pointed type + +```agda +constant-suspension-structure-Pointed-Type : + {l1 l2 : Level} (X : UU l1) (Y : Pointed-Type l2) → + suspension-structure X (type-Pointed-Type Y) +pr1 (constant-suspension-structure-Pointed-Type X Y) = + point-Pointed-Type Y +pr1 (pr2 (constant-suspension-structure-Pointed-Type X Y)) = + point-Pointed-Type Y +pr2 (pr2 (constant-suspension-structure-Pointed-Type X Y)) = + const X (point-Pointed-Type Y = point-Pointed-Type Y) refl +``` + ## Properties #### Characterization of equalities in `suspension-structure` @@ -482,6 +499,68 @@ module _ ( id)) ``` +#### The underlying map of the equivalence + +```agda +module _ + {l1 l2 : Level} (X : Pointed-Type l1) (Y : Pointed-Type l2) + where + + map-equiv-susp-loop-adj : + ((suspension-Pointed-Type X) →∗ Y) → + (X →∗ Ω Y) + map-equiv-susp-loop-adj f∗ = + ((pointed-map-Ω f∗) ∘∗ (unit-susp-loop-adj∗ X)) +``` + +#### The underlying map of the inverse of the equivalence + +The following function takes a map `X → Ω Y` and returns a suspension structure +on `Y`. + +```agda +module _ + {l1 l2 : Level} (X : UU l1) (Y : Pointed-Type l2) + where + suspension-structure-map-into-Ω : + (X → type-Ω Y) → suspension-structure X (type-Pointed-Type Y) + pr1 (suspension-structure-map-into-Ω f) = point-Pointed-Type Y + pr1 (pr2 (suspension-structure-map-into-Ω f)) = point-Pointed-Type Y + pr2 (pr2 (suspension-structure-map-into-Ω f)) = f +``` + +The above plus the universal property of suspensions defines the inverse map. We +use the universal property to define the inverse. + +```agda +module _ + {l1 l2 : Level} (X : Pointed-Type l1) (Y : Pointed-Type l2) + where + + map-inv-equiv-susp-loop-adj : + (X →∗ Ω Y) → ((suspension-Pointed-Type X) →∗ Y) + pr1 (map-inv-equiv-susp-loop-adj f∗) = + map-inv-up-suspension + ( type-Pointed-Type X) + ( type-Pointed-Type Y) + ( suspension-structure-map-into-Ω + ( type-Pointed-Type X) + ( Y) + ( map-pointed-map f∗)) + pr2 (map-inv-equiv-susp-loop-adj f∗) = + up-suspension-N-susp + ( type-Pointed-Type X) + ( type-Pointed-Type Y) + ( suspension-structure-map-into-Ω + ( type-Pointed-Type X) + ( Y) + ( map-pointed-map f∗)) +``` + +We now show these maps are inverses of each other. + +[To Do] + #### The equivalence between pointed maps out of the suspension of X and pointed maps into the loop space of Y ```agda