-
Notifications
You must be signed in to change notification settings - Fork 26
/
change_log.txt
55 lines (43 loc) · 2.75 KB
/
change_log.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
0.0.1
create project on 2020.11.06
0.0.2
中文:
一、整体框架及模型侧
50+排序(包含序列、多任务)、召回模型,tf和torch双语言支持
召回模型实现多分类负采样策略
序列模型统一实现可选的add和label_attention策略,使listwise模型转为可用的pointwise模型
FM类模型的高度统一实现和拓展
layer和model分离,用户可引入不同layer组合新的模型架构
统一seed,使得模型训练效果稳定可复现
模型参数尽可能多开放,并可以个性化配置
二、特征工程侧
统一特征数据输入规范:数值特征(必选)+类别特征(必选)+多值特征(可选)+序列特征(可选)
个性化生成测试训练数据。平等的使各种设备、各种配置都能运行、测试、体验深度模型。
实现部分常用的特征工程函数。
三、语言性能侧
tf模型充分利用tf.function的优势
统一tf和torch的模型权重初始化和默认应对策略
torch模型通过自建build函数自适应输入尺寸,使得torch和tf统一
torch模型拓展自身函数,如BN、LN等,使得torch和tf统一
torch模型统一增加L1、L2正则
English:
I. Overall Framework and Model Side
- Over 50 sorts (including sequences, multi-task), recall models, dual-language support for TensorFlow and PyTorch
- Multi-class negative sampling strategy implemented in recall models
- Unified implementation of optional add and label_attention strategies in sequence models, converting listwise models to usable pointwise models
- Highly unified implementation and expansion of FM-like models
- Separation of layers and models, allowing users to combine different layers to create new model architectures
- Unified seed for stable and reproducible model training effects
- As many model parameters as possible are open and can be individually configured
II. Feature Engineering Side
- Unified feature data input standards: Numerical features (mandatory) + Categorical features (mandatory) + Multi-valued features (optional) + Sequence features (optional)
- Personalized generation of test and training data. Equally enabling various devices and configurations to run, test, and experience deep models.
- Implementation of some commonly used feature engineering functions.
III. Language Performance Side
- TensorFlow models fully utilize the advantages of tf.function
- Unified weight initialization and default strategies for TensorFlow and PyTorch models
- PyTorch models adapt to input sizes through self-built build functions, unifying PyTorch and TensorFlow
- PyTorch models expand their own functions, such as BN (Batch Normalization), LN (Layer Normalization), etc., to unify PyTorch and TensorFlow
- Unified addition of L1 and L2 regularization to PyTorch models
0.0.5
0.0.6