-
Notifications
You must be signed in to change notification settings - Fork 1
/
part2_stochastic_MonteCarlo.nb
4566 lines (4545 loc) · 205 KB
/
part2_stochastic_MonteCarlo.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 7.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 145, 7]
NotebookDataLength[ 204870, 4558]
NotebookOptionsPosition[ 204192, 4530]
NotebookOutlinePosition[ 204532, 4545]
CellTagsIndexPosition[ 204489, 4542]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*",
RowBox[{
RowBox[{
RowBox[{
"**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**", "**",
"**", "**", "**", "**", "**", "**", "**", "**", "**", "**",
"\[IndentingNewLine]", "Code"}], " ", "corresponing", " ", "to", " ",
"the", " ", "publication", "\[IndentingNewLine]",
"\"\<New insights into mRNA trafficking in axons\>\"", "\n", "LF", " ",
"Gumy"}], ",",
RowBox[{"EA", " ", "Katrukha"}], ",",
RowBox[{"LC", " ", "Kapitein"}], ",",
RowBox[{
RowBox[{"CC", " ", "Hoogenraad"}], "-",
RowBox[{"Developmental", " ", "neurobiology"}]}], ",",
RowBox[{
RowBox[{
"2014", "\[IndentingNewLine]", "\[IndentingNewLine]", "Part", " ", "2"}],
":", " ",
RowBox[{
RowBox[{"Stochastic", " ", "Monte"}], "-",
RowBox[{
"Carlo", " ", "approach", "\[IndentingNewLine]", "\[IndentingNewLine]",
"email", " ",
RowBox[{
RowBox[{"katpyxa", "@", "gmail"}], ".", "com"}], " ", "for", " ",
"any", " ", "questions", "\[IndentingNewLine]", "GNU", " ", "General",
" ", "Public", " ",
RowBox[{
"License", "\[IndentingNewLine]", "**", "**", "**", "**", "**", "**",
"**"}]}]}]}]}], "******)"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"MAIN", " ", "PARAMETERS"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"NB", ":", " ",
RowBox[{"time", " ", "and", " ", "space", " ", "scale", " ", "are", " ",
RowBox[{"dimensionless", "!"}]}]}], "*)"}], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
"recalculate", " ", "p", " ", "value", " ", "accordingly", " ", "to", " ",
"get", " ", "right", " ", "scales"}], "*)"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"number", " ", "of", " ", "time", " ", "steps"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"NSteps", "=", "200"}], ";"}], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"number", " ", "of", " ", "particles"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"nParticles", "=", "10"}], ";"}], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
"probability", " ", "of", " ", "moving", " ", "to", " ", "the", " ",
"right"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"p", "=", "0.55"}], ";"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"Initial", " ", "particles", " ", "position"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"xini", "=", "0"}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"calculate", " ", "trajectories"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"track", "=",
RowBox[{"Table", "[",
RowBox[{"0", ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",", "nParticles"}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "NSteps"}], "}"}]}], "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{"For", "[",
RowBox[{
RowBox[{"i", "=", "2"}], ",",
RowBox[{"i", "\[LessEqual]", "NSteps"}], ",",
RowBox[{"i", "++"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"For", "[",
RowBox[{
RowBox[{"j", "=", "1"}], ",",
RowBox[{"j", "\[LessEqual]", "nParticles"}], ",",
RowBox[{"j", "++"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"val", "=",
RowBox[{"Random", "[", "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"If", "[",
RowBox[{
RowBox[{"val", "\[GreaterEqual]", "p"}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"track", "[",
RowBox[{"[", "j", "]"}], "]"}], "[",
RowBox[{"[", "i", "]"}], "]"}], "=",
RowBox[{
RowBox[{
RowBox[{"track", "[",
RowBox[{"[", "j", "]"}], "]"}], "[",
RowBox[{"[",
RowBox[{"i", "-", "1"}], "]"}], "]"}], "+", "1"}]}], ";"}],
",", "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
"Unpermeable", " ", "border", " ", "on", " ", "the", " ",
"left"}], "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"If", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"track", "[",
RowBox[{"[", "j", "]"}], "]"}], "[",
RowBox[{"[",
RowBox[{"i", "-", "1"}], "]"}], "]"}], "\[Equal]", "0"}],
",", ",",
RowBox[{
RowBox[{
RowBox[{"track", "[",
RowBox[{"[", "j", "]"}], "]"}], "[",
RowBox[{"[", "i", "]"}], "]"}], "=",
RowBox[{
RowBox[{
RowBox[{"track", "[",
RowBox[{"[", "j", "]"}], "]"}], "[",
RowBox[{"[",
RowBox[{"i", "-", "1"}], "]"}], "]"}], "-", "1"}]}]}],
"]"}], ";"}]}], "\[IndentingNewLine]",
RowBox[{"(*", "*)"}], "\[IndentingNewLine]", "]"}], ";"}]}],
"\[IndentingNewLine]", "]"}], ";"}]}], "\[IndentingNewLine]", "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", " ", "[", "\"\<Done.\>\"", "]"}], ";"}]}]}]], "Input",
CellChangeTimes->{{3.5788406033287125`*^9, 3.578840814219338*^9}, {
3.5788408448912125`*^9, 3.5788409358599625`*^9}, {3.5788410402662125`*^9,
3.5788410935162125`*^9}, {3.5788411349849625`*^9, 3.578841228313088*^9}, {
3.5788412676099625`*^9, 3.5788412685474625`*^9}, {3.578841383156838*^9,
3.578841384281838*^9}, {3.5788414471099625`*^9, 3.5788416082349625`*^9}, {
3.578926548165463*^9, 3.578926549243588*^9}, {3.578928172010951*^9,
3.578928173167201*^9}, {3.5789369896783676`*^9, 3.5789370006939926`*^9}, {
3.578937477041092*^9, 3.578937492166092*^9}, {3.5789376494239397`*^9,
3.5789376835643873`*^9}, {3.5789377536518135`*^9, 3.578937763543583*^9}, {
3.578938254989534*^9, 3.578938261217659*^9}, {3.5789383238003874`*^9,
3.5789383238316374`*^9}, {3.688390426397841*^9, 3.688390614421816*^9},
3.688624675520513*^9, {3.6886278348228893`*^9, 3.688627852832197*^9}, {
3.688627919559301*^9, 3.688627965386558*^9}, {3.688628063347851*^9,
3.688628146498114*^9}}],
Cell[BoxData["\<\"Done.\"\>"], "Print",
CellChangeTimes->{3.6886281523370247`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"now", " ",
RowBox[{"let", "'"}], "s", " ", "visualize", " ", "as", " ", "a", " ",
"plot"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"ListPlot", "[",
RowBox[{"track", ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",", " ",
RowBox[{"PlotStyle", "\[Rule]", "Thick"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.5788412924849625`*^9, 3.5788412934224625`*^9}, {
3.578841337813088*^9, 3.578841341250588*^9}, {3.578841422688088*^9,
3.578841433313088*^9}, {3.5789373830982895`*^9, 3.578937414525467*^9}, {
3.68839063333515*^9, 3.68839064018906*^9}, {3.688390732149228*^9,
3.688390738820962*^9}, 3.688627941063354*^9}],
Cell[BoxData[
GraphicsBox[{{}, {{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.004583333333333334],
Thickness[Large], LineBox[CompressedData["
1:eJxdlstOFUEQQDuuXLpw4cLF1RhjjDG+30qrvER8gYIg4gCCuPIX+lPup/TS
z7if4Ceooc4kdTohlZMzNdVT1TPcC/u/1g5PlVJ+//v7H0/Wn7mSV814WnxG
fFZ8Tny+5joT+YviS7r+svwV+avy18TXxTfEN8W3dP/b8nfk7+Ij3otI3+5H
pG8PItK3hxHp2yP5x8p/Iv9U/pnqz8nXnN+q/HN5mP29kIfJf5nrN5j+zMvP
yy/IL8gvyi/KL8kvyS9HjPm1ZflX8jBrRX5F/nXmBnNeVuVX5d/k/TSYeb6N
GP1uMOfhXcSYV4N5D99nX2HmCcf9O0z9D9lXmHz5Ll/WlL+WfYNjf12+rGv/
69k3mPry5aPy4ehPk+8w+Z+0f5jzBsf8Osx8N7KvG9m30Z+sLi6b+fq6mX0T
d3H5nLnC1Jfv8mVL+VvZt9GfxA5zfrazr9vZN5j5yZcvyoepP/rYv7js5Ovr
TvZN3MXla+YKU3/0sX/5sqv972bf5Lt8+ab64gbH9X30EYfsJ0P2VX4Yfdxf
firf5We6f9mLGPOc7GVf5QeY7x0c7+MU5n2F432eyZf97Cdw/C6p8gPM9xSm
Psx5hWP/M5jnP4hI/w+yrzDPL9+UP5Xv8rPRx/qeeSKu4kHcYOqPPurDPD/M
74PDiNG/Ccz3WH6Amb/8VPldfiZfjiIy/6Psq/wg3+Sn8h2mvnz5kf0E5v8J
zPzlm/wUpv/yM+WXY9U/zr7KD/JNfirfYerLl5+j/wuoxwDO
"]]},
{RGBColor[0.880722, 0.611041, 0.142051], PointSize[0.004583333333333334],
Thickness[Large], LineBox[CompressedData["
1:eJxd1kluFEEQRuEQK5YsWLBgUVgIIYQQ8wxOM3jGGAPGE7hsaDArrhBHqaPE
kmPUETgCIMdfUryUrNTT56zM6q5u9aXjX1uzM2b2+9/f//l0/Jm3OlrNs+hz
6PPoC+iL6A49h77c6rmuwK+ir6Gvo2+gb6JvoW+j76Dv4nz34PfhD+AP0Y/w
/4/hT9BP8f/P5Dk/h8/DW3VXayzAF+AvajvaXsLVOs8rONpeY3+1zr+Ycz6X
vghfgi/Bl3H9ZfgK1q/AV+Gr8DVcfw2+jvXr8DdwtT53G/AN+Fu4WtffrOdr
m9UdHpPneFe7oR0daNvC/mrtr87zh1r39756U2s9PNRa/yHn/N5q6vzecnjA
7SPWq/P6Dg+11m9j/XZ1h4da5/+Us+5frftX6/2D2071tlPd4QG3Xey/W93h
Abc9rN+r7mrtP3mOfZx/v7rDA24HWH9Q3eEBt89Yr9b54TF5ji+1G9rVWj95
zofY/7C6wwNuffWur97U+f70aj3f6nw+B3jAR7We/6Oc83dBd1S9wXu4wwd4
wEe4Hdfzdeo8f1Pr/uEOH+CB649w+4r91bp/eA93te5fnb+rQj2X+8PtW/VO
nb+7GryHO3xQa3+1Xn+1Xv9Z9W5WvcF7uKv1/MEDPsLtO/ZX5/kbvFdrf7X2
V+v9h49w+5FzPj+dWp8/dX4++8lPh8MHeMBHXN9OsP9J9abW/nDH+gEeWD/C
7ee0/i8lMQKr
"]]},
{RGBColor[0.560181, 0.691569, 0.194885], PointSize[0.004583333333333334],
Thickness[Large], LineBox[CompressedData["
1:eJxdlkluFUEQBUusWLJgwYJFYyGEEELMM7gYzOwBm8kYm7aNDay4Qh2lj1JL
jtFH4AiAyEDK+JKVCoVfDZ3V9f+pvR/rB0dKKT///P2t/z6/Fkv+1IxHa/6/
Y/LH5U/go56seZyh5nEW5E8rf0b+rPw5zX9e67sgf1H5Sxr/svwV+avy1zT+
dc1/Q/6m8rfkb8vf0fx35e/J35dflK/Ztyr/IGr0p8H0+WHU6HOD6fOjqNHn
Bi9EfRw1+txg+rwkvyT/RB5m/KeaH2Z9z7R+mP09j8r+n8u/UB5m/JeaH2Z9
r7R+mP0tR41z3pblV5RfkV9VflV+LefrWvYNjnyHec9eR433rMLxnjX5DpNf
V349+ybfYd7jjajxHteN7Jt8ly9vlIfjHmhw3AMd5h54GzXugQrHPdDguAc6
zD3wLvsKk4dj/A4z//u8vgqzfpj9w+z/Q/YVJi/fYfKbym9m3+Q7zD37UXmY
PEz/5ctW9nUr+wYzv3z5pDzM+ZPv8mVb+e3sm3yXLztR4/2qO9k3mDzM+j9H
5fnB9A/m/MqXMfsBjvNV4Th/o3yTn+S7xp/ly67m382+yo/yTX6CY38djucz
y5e97Ie97Kv8CHO+4OjPJN/lZ5j+72c/7Gdf4TgfI8z9LD/Jd/lZvnzJfoCZ
H471jfJNfoLZv/ysfDnQ/AfZV5j5YZ6//CTf5Wf5chiV/h9mX2Hml2/KT/Jd
fpYvX/P4A8z+5Uf5BtN/mP7D8f0+wwtRv0WN3ycDHL9fqvwIR77BMf4k35Wf
5cv3//43jAsIqA==
"]]},
{RGBColor[0.922526, 0.385626, 0.209179], PointSize[0.004583333333333334],
Thickness[Large], LineBox[CompressedData["
1:eJxdlUluFEEQRUOsWLJgwYJF0UIIIYSYZ3DaYBvwgPGAbYwhadzGrLhCHKWO
kkuOUUfgCIAqfkvxUmqFXr/+GVFZpa4r01/bs3Nm9vvf538d158Fy6vk78+X
/P0F+IvysS6BL+P3HfwE/ir8NfB18A3wTfAt8G3wHfS/C38P/r581AdRdU4P
o+qcHkXVOT2Gf4L8U+z/DP458i/gXyK/gPlL9l7gF+XH5WBbggfbq7yfizXP
6zyvi3U9y1HjvHwZfgV+BX4V+6/Cv0FerOf2bdR4bl2s5/YdvFj5Nfg1+HX0
X4ffQH4DfhN+E/499hfr+reixvmUrexdHPkm1v4fcv8ijvNx8STy8LaNvDj2
d/gGbzt5vrKTvYuVF6v/LvrvZu/wDd72kN/L3sWTyMPbR+TFmh++wdt+VF3/
fvYuVh7eDtD/IHsX6/7D2yHyh9m7WHl4+4T5xXr+4JtY+SPkj7J3sa4f3j5j
frHun3gSebHeS8dR471UjrN3+AZvX/L+Raz+Ys0Pb1+RF6s/fIO3mufravZF
HPkq1nzwPXwTx/wDvH3LvhPH/SnwFd7Fcf97cTw/DX5A3qboP82+iCNf4R2+
F6s//IC8fc++E0e+wFd4F8f/dy+O92sTx/t3gLeTnO9Osi/wFd7FsX8/9+Nq
8APyNkP/WfZFHPkK7/D93Ed/8IDf22nerzvNvsz9uCrYwT24gQew/cjcidV/
7sda4R35HtzAA/J2hv5n2Rf4Cu/wPXyDH+Dtp3z5CzwkALQ=
"]]},
{RGBColor[0.528488, 0.470624, 0.701351], PointSize[0.004583333333333334],
Thickness[Large], LineBox[CompressedData["
1:eJxd1clOFkEUhuETVy5duGDhoiXGGGOMA84DhYADk/gLKIPQDD/Iyls4l9KX
cpZeRl+Cl6Cm6+vkvJ2QysdTp053Ud3cPPk1mV4xs9//fv6Pw/Vn3vJV8u+v
lszX4NfldZyB34A38Fmsfwv5NubfwXp34ffg9+EPsP5D+CP4Y+Q5zH+Cfk/h
z+DP66h9fVFH7evLOmpfX8Ffo/4N/C18Hl7y+l7gC/AF+Lu8vivr+Rbhi/Al
+BJ8uY51/3wZ/h6urOtDzo5sH+HI9gmObCvovwJfRb2yzsMafA2+Lh9GX4dv
wDfgn7E+sm3m+WUzu8MDbl9yLsiOHMq6v4l8GMsku8NDWef5ax3reSzKOq/w
gNtWHet3qmxld3jAbRv9t7O7surhtoP+O9kdHnD7hv7Kep+UtX9w+569KGv/
4QG3XdTvZnd4KKv/Hur3sjs8lNV/X15n7Wd3eCDbQZ5fDrI7cmC+/UB/ZEcO
ZdUfov4wu8MD2Y5Qr6x6eCBbm3OjrP2At3CHd/AYfRh7Zf39j7M3x9mLcj3f
LdxR3ymrP7yH20m+/wa5KNf57ei1v3K9n05Z3xvl+r72cDvN9c1p9gJvldUf
3qE+4D3q7ayO9fmas+wF3o4+XI7cIQdyj/Vsmvs10+xl9OFqkR25Q31g/V5Z
5+8c/c+zF2WdP2V9n+Ed6gPr98p6/gv0v8he4C3cRx+uDh7wHtl+5twoq//o
tb+y3j9lPT884L2y/n9d1nGm/AV4iwlW
"]]},
{RGBColor[0.772079, 0.431554, 0.102387], PointSize[0.004583333333333334],
Thickness[Large], LineBox[CompressedData["
1:eJxd1Ulu1FAQxvESK5YsWLBgYVoIIYQQ8wx5CZlDyECYMpCXkIkVV6ij+Chv
yTF8BI4AqOuzVH9LUenrX+qV/Wx33zj+tX16ycx+//v7X6fHnxnLR8mfXy75
8yvwq/BrJfddh3fwCfwm/Bbm3i557h3MvQu/B78Pf4D1H8IfwR/Dn2D9p1F1
3c/gz9H/Auu/hL+Cv46q/XkTVfv3Fj4DL9ldWevPwmfhc/n8XFnX9y5qXL8r
677PR52Ez8MX4AvwRay/CF9C/xJ8Gb4MX8H6K/BV9K/C1+Br8PdYX1n7tx5V
+7sO/wBX1v3ZiKr7twHfzP1lM7srR3+D21b2spXd4U1Zz9921Pj+KMpxOHJD
to/oV471XVnz4baD89/J7sqxfoPbJ8xX1vkjN2T7nHNBduSGbF/Qj+zKOn+4
fUU/siurf/So36Jq/5R1/5Xj+WrKen53s5fd7A5vcNtD/152V473q8FtH/37
2R3e4HaA/oPsDm/Ken++R9X+Kev5gze4HaJfWfuvrPlwq7m/U471i3Lc/wp3
eA9v8GH0OI6yd0fZC7yOHvPhPfobfIDbcc6dst5neEV2/H8Pb8gDsv3AfGXN
h1e4jz6tPbzBB7idYP5J9jL6tFZl/Z4ox/PUwxt8gNtp9k5Z75NyvE8V7vAe
3uAD3M6yd8rxfVHgFe7K8XveK09iPnxAv51n786zF2XNhzu8V9b1wwe4XWTv
LrIXeFXWfHgPb8q6frj9HPv/AubD/yo=
"]]},
{RGBColor[0.363898, 0.618501, 0.782349], PointSize[0.004583333333333334],
Thickness[Large], LineBox[CompressedData["
1:eJxdlUtOFkEURiuOHDpw4MBBS4whxhDfT5TLQ0QBgR9EFIUG5OHILdRSeik1
dBm9BJeghu8M7vcn5ub08evqun2ruXX8a3J6pZTy+9+///Xy92eu5F/k61cj
X78W+fp1u37Drt8031l+yu5/29a/Y37a/F28fvfMz5i/b/6B+YfGj+z/Pzb/
xPxTe95nquz3uSr9eGH+pflXqvRzVpU+v1alz29U6fOc6pRqqKrPFabP86rq
c503v2B+wfyi3X/R/JLll8y/NQ/znpfNL5t/p6o5qDBzsGJ+xfx7Vc1JhZmT
D6qakwozJ6uqmpO6an7N8mvm1y2/bv6j5WGeb8Oef8P8Zs7HZvYVVr6ZL1uW
38q+mm/myyTfPybZV5g8zP63bf3t7Cus/jXzZSf72Mm+mm8w5/yTqs55wDrn
1XwzX3ZV9R2I3ewrTB5m/c+2PkzefIPJ71l+L/sKs3+Y/n1Rpf8w7w9mfsyX
r9kHrPNXYZ3PBnO+91V1/mM/+2q+mS/f8v0DZn3zDSb/3fIwefPNfDmw/EH2
FaZ/5sth9gHTf5jzA/P++uw7WPkw38OcD1jzMcCanwZrvkaY+T/KvoOVD/M9
zHzDOj8DrL+jzfxo+XKcfQcrH+Z7mPVhPd8As39Y/RnNl5Psu5PsA2b/MOvD
7N98Mz+aLz+y72D2b76HWd/8YL7BvH+Y/Z+qsn9Y8xUw8wcz37Dmf4B1Phqs
8zWaL2fZd2fZh/ke5vtifrB8g/V8I8z37zz77jz7gNm/+Wr5AWZ986Ply4Wt
f5F9mO9hvk8w+zffzI8w38+fqtPxF4GWDb4=
"]]},
{RGBColor[1, 0.75, 0], PointSize[0.004583333333333334], Thickness[Large],
LineBox[CompressedData["
1:eJxdlktu1UAQRUuMGDJgwICBQQghhFD4/0nnQwj58HkBEkIA55GQMGILtRQv
pYcsw0tgCYBct6U6LT2Vjk7frnY/W/al+a/Z8Rkz+/3v979O48+i5VEyngWf
Kzl3Hv4C+CLmd/JRL8NfQf4q+Br4OvI3sP5N+AX4W/C3sf4d8F3wPeTvY/0H
8A/hH0XVOT+OqnN+Av8U+Wfwz+EX0b9k72Lll+CX4Jfz/nwZfgV+BX4VfhX+
BfqLtf81+DX4l/LTcLCt5/m+Dv8KebHW30D/DfhN5Dfht+C34Lfht+Ffo79Y
5/cGXqz827x+Abs45tfmo77L/YpY/yd8FSs/Q36WvYvVv/kYO9mXnewdXDHf
3mdfwC5W/+ajfkB/sfLwFd4+or9Y9yN8Bdsu+u9m7+CK+baH/nvZe/NTrWLd
X5+yL2Ll4Su87aP/fvYOX8H2GXmx8s1Hf7H2fxA17tdykL2LlRdr/1/QH+zg
CravyIMdXMH2Le+niPX8iPX8wVuffSfWecD38C6O9/4AX5Efxep/iP6H2Rf4
Ht7Fcf0DfEV+FOt9Os/77+bZF/heHN81Lo7vmgG+wo/w9j37ThzfRQW+h3f4
Qaz+4tj/KNb1H0XV+R9lX+B7sc5frPNvfhoVfoS34+w7sf5/sfrDO/wAX7H+
2HyMH5k7sZ4n+B7em4/+Yj1v8CPydpJ9d5J9ge/hvflpDOCK+SPWs9PsO7Fm
wffNT9XhB+QreATbz8Z/AbSHCgA=
"]]},
{RGBColor[0.647624, 0.37816, 0.614037], PointSize[0.004583333333333334],
Thickness[Large], LineBox[CompressedData["
1:eJxdlkluFjEUBi1WLLNgwYJFByGEEEIQ5jFmCoQpEIYkQJIm5Cew4go+Sh/F
S47RR+AIgNrV0qsnRVal+vNz21brXz74tbk4llL6/e/v/zjVn9UUK8f/H89R
L4lP6PmT8qfkO/nT8mfkz4rPic+LL2i+i/KX5C/Lr4iviK+Kr4mvi2+Ib6r/
LXwbb7eRfb8jf1f5e/L35Vflc/Qlyz+Qh6mHkYs4PVIeZv7HbWzvV2Du1RN5
mPyaPEz+qTxM/pnWB1Pr8uvyz+Vh5n8hD1MvIxdxeiUvTq/lYc57I66nbMi/
ifksLuIKk3+rvLiIK0x+U3lxgdvzVT69U15cxBWm/3vlxQWmv3z6EH2G2W/5
OvtWH9Uf5r7MfhorzPdgq43tvuet6AtMXj5tK78dfZGvMN/5HeV3oi/yVT59
Uh6mP8z6Yc7vc/QZJi9fYfJf8O0pcYE5v9m3cTf2y7vRF5j87FvtRZ/3oi/y
VT7ta/0w92f201hhzr+PvoNZj3wPs79wO79BvsqPMOf/NfoOZj9h+sO8n/yg
fJUflU8H+Kk6cYbb8718EQ96vs6+9ZdP36LvYN4fbvvTyxflB5j+s59qlE+H
0XeH0efZt/7yRX6Qr5p/lE+LmO8W0efZT9WLi3gQV/Go+dN39YfZf5j9h/m+
yQ/yVX6UT0fRd0fRZ7j9ju7li/IDzP2XH5VPP9Qf5v3le/kCc/4w5y8/yqef
+PQXLVkH9A==
"]]},
{RGBColor[0.571589, 0.586483, 0.], PointSize[0.004583333333333334],
Thickness[Large], LineBox[CompressedData["
1:eJxd1EtOFVEQh/GKI4YOHDhw0BJjjDHG91s5ojwUUHkIAgoNCujILdRSeiln
6DLOElyCmK5/J/V1Qk6+/Lr6NLfv7avHvzdOLpjZn/O//+t4/J2zfJScMyWf
dxF+CX0ZfQXdoWfR17DfdXmsN+A34bfgt+F34Hex/z34ffgD9EOc/wj+GP0E
/RT9DP0c138hj/Ul/BXm5+Alu6PtNRxt8/l6Pg9/g3m19n8rH1dX63u2AFdr
fhHXR9sS7m8Jvgxfhr+Dq/V5v8/362r9LlZijd+Fr8BXMb8KX8P8GvwD5tW6
v49wteY/5esXdfxuHV7Vml/H/Hp2h1e4beT7K2o9b3hVa34T85vZHV7htoX5
reyu1v2r9V77HGu814o63msOr3Dbxvx2dlfPxjzcdjC/k93hVa37/4J5tebh
Va353Vj1/Hezu1rzcNvD/F52h1e1nt9+rHp++9kdXuH2FfNqff/gFW7fMK/W
/vCq1vwB5g+yO7zC7TDWeD8VdRwOr3Drc3dqXQ/ew33ycR3gFd7gdpS9O8pe
Jo/90Y4e0BXXa3A7zt2ptT+8h/vk4zqo9bzgDfP2PXun1vcB3sMdPqj1+U8+
Hg1tP3J36KKO6/VwRw/oivk2eawn2Tu1zoL3k4+rwwfMV3jDvJ1i/9PsBd7D
HT5MHvvDG9zOcnfogu7Rjh7Uev7wBref2B9d1Pr/4Q4fJh/XCm9w+xXrTPkH
9vAF5A==
"]]}}, {}, {}, {{}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0., 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
ImageSize->{764., Automatic},
Method->{"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0., 200.}, {0, 25.}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.5788412936724625`*^9, 3.5788413419224625`*^9, 3.5788413881412125`*^9, {
3.578841424531838*^9, 3.5788415025162125`*^9}, {3.578841588375588*^9,
3.578841610344338*^9}, 3.578926552493588*^9, 3.578928183714076*^9, {
3.5789370054439926`*^9, 3.5789370149127426`*^9}, {3.5789373874107633`*^9,
3.578937416087967*^9}, {3.578937481634842*^9, 3.578937494212967*^9}, {
3.578937663836122*^9, 3.5789376871112623`*^9}, 3.578937765891529*^9,
3.578938265102034*^9, 3.578938326222262*^9, {3.688390516852043*^9,
3.68839055948215*^9}, 3.688390628325028*^9, 3.688624685981886*^9, {
3.688627957676566*^9, 3.688627971430036*^9}, 3.688628157695355*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"animate", " ", "particles", " ", "movement"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"MovieAnimat", "=",
RowBox[{"{", "}"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"For", "[",
RowBox[{
RowBox[{"i", "=", "1"}], ",",
RowBox[{"i", "\[LessEqual]", "NSteps"}], ",",
RowBox[{"i", "++"}], ",", "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{"PointArray", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"PointSize", "[", "0.05", "]"}], ",",
RowBox[{"Hue", "[",
RowBox[{"nParticles", "/", "j"}], "]"}], ",",
RowBox[{"Point", "[",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"track", "[",
RowBox[{"[", "j", "]"}], "]"}], "[",
RowBox[{"[", "i", "]"}], "]"}], ",", "0"}], "}"}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",", "nParticles"}], "}"}]}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"MovieAnimat", "=",
RowBox[{"Join", "[",
RowBox[{"MovieAnimat", ",",
RowBox[{"{",
RowBox[{"Graphics", "[",
RowBox[{"{",
RowBox[{
RowBox[{"PointSize", "[", "0.05", "]"}], ",",
RowBox[{"Hue", "[", "1", "]"}], ",",
RowBox[{"Point", "[",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"track", "[",
RowBox[{"[", "1", "]"}], "]"}], "[",
RowBox[{"[", "i", "]"}], "]"}], ",", "0"}], "}"}], "]"}],
",", "Black", ",", "Dashed", ",",
RowBox[{"Line", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"Min", "[",
RowBox[{"track", "[",
RowBox[{"[", "1", "]"}], "]"}], "]"}], "-", "1"}], ",",
"0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"Max", "[",
RowBox[{"track", "[",
RowBox[{"[", "1", "]"}], "]"}], "]"}], "+", "1"}], ",",
"0"}], "}"}]}], "}"}], "]"}]}], "}"}], "]"}], "}"}]}],
"]"}]}], ";"}], "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"zz", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"Hue", "[",
RowBox[{
RowBox[{"N", "[",
RowBox[{"j", "/", "nParticles"}], "]"}], ",", "1", ",", "1", ",",
"0.5"}], "]"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",", "nParticles"}], "}"}]}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{"zz", "=",
RowBox[{"Hue", "[", "1", "]"}]}], ";"}], "*)"}],
"\[IndentingNewLine]",
RowBox[{"MovieAnimat", "=",
RowBox[{"Join", "[",
RowBox[{"MovieAnimat", ",",
RowBox[{"{",
RowBox[{"Graphics", "[",
RowBox[{"{",
RowBox[{
RowBox[{"PointSize", "[", "0.05", "]"}], ",",
RowBox[{"Point", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"track", "[",
RowBox[{"[", "j", "]"}], "]"}], "[",
RowBox[{"[", "i", "]"}], "]"}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",", "nParticles"}], "}"}]}], "]"}],
",",
RowBox[{"VertexColors", "\[Rule]", "zz"}]}], "]"}], ",",
RowBox[{"Line", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"Min", "[", "track", "]"}], "-", "1"}], ",",
"0"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"Max", "[", "track", "]"}], "+", "1"}], ",",
"0"}], "}"}]}], "}"}], "]"}], ",",
RowBox[{"Inset", "[",
RowBox[{
RowBox[{"Style", "[",
RowBox[{
RowBox[{"StringJoin", "[",
RowBox[{"\"\<Steps N=\>\"", ",",
RowBox[{"IntegerString", "[", "i", "]"}]}], "]"}], ",",
" ", "Larger"}], "]"}], ",",
RowBox[{"{",
RowBox[{"1.5", ",",
RowBox[{"-", "4.6"}]}], "}"}]}], "]"}]}], "}"}], "]"}],
"}"}]}], "]"}]}], ";"}]}], "\[IndentingNewLine]", "]"}], ";"}],
"\[IndentingNewLine]",
RowBox[{"ListAnimate", "[",
RowBox[{"MovieAnimat", ",",
RowBox[{"AnimationRunning", "\[Rule]", "False"}]}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.5788417017974625`*^9, 3.5788417194224625`*^9}, {
3.578842236375588*^9, 3.5788422562037125`*^9}, {3.578842303906838*^9,
3.5788423081099625`*^9}, {3.578842370813088*^9, 3.578842374688088*^9}, {
3.5788424130162125`*^9, 3.5788425816099625`*^9}, {3.5788426250162125`*^9,
3.5788428010162125`*^9}, {3.5788429470787125`*^9,
3.5788429922037125`*^9}, {3.578843153094338*^9, 3.5788432415162125`*^9}, {
3.578843596188088*^9, 3.5788436007662125`*^9}, 3.578897452441692*^9, {
3.578926441056088*^9, 3.578926505134213*^9}, 3.578926577915463*^9, {
3.578926615321713*^9, 3.578926772446713*^9}, {3.578927984823451*^9,
3.578928016604701*^9}, {3.578928052948451*^9, 3.578928158839076*^9}, {
3.5789370848502426`*^9, 3.5789371369127426`*^9}, {3.5789371891314926`*^9,
3.5789372581627426`*^9}, {3.578937506728592*^9, 3.578937511181717*^9}, {
3.578937779829029*^9, 3.578937786797779*^9}, {3.6883906439499607`*^9,
3.688390662117731*^9}}],
Cell[BoxData[
TagBox[
StyleBox[
DynamicModuleBox[{$CellContext`i3$$ = 105, Typeset`show$$ = True,
Typeset`bookmarkList$$ = {
"\"min\"" :> {$CellContext`i3$$ = 1},
"\"max\"" :> {$CellContext`i3$$ = 200}}, Typeset`bookmarkMode$$ = "Menu",
Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ =
"\"untitled\"", Typeset`specs$$ = {{{
Hold[$CellContext`i3$$], 1, ""}, 1, 200, 1}}, Typeset`size$$ =
Automatic, Typeset`update$$ = 0, Typeset`initDone$$,
Typeset`skipInitDone$$ = True, $CellContext`i3$818$$ = 0},
PaneBox[
PanelBox[
DynamicWrapperBox[GridBox[{
{
ItemBox[
ItemBox[
TagBox[
StyleBox[GridBox[{
{"\<\"\"\>",
AnimatorBox[Dynamic[$CellContext`i3$$], {1, 200, 1},
AnimationRate->Automatic,
AnimationRunTime->20.048962593078613`,
AnimationRunning->False,
AnimationTimeIndex->2.625000000000112,
AppearanceElements->{
"ProgressSlider", "PlayPauseButton", "FasterSlowerButtons",
"DirectionButton"},
AutoAction->False,
DisplayAllSteps->True]}
},
AutoDelete->False,
GridBoxAlignment->{
"Columns" -> {Right, {Left}}, "ColumnsIndexed" -> {},
"Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
GridBoxItemSize->{
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}],
"ListAnimateLabel",
StripOnInput->False],
{"ControlArea", Top}],
Alignment->{Automatic, Inherited},
StripOnInput->False],
Background->None,
StripOnInput->False]},
{
ItemBox[
TagBox[
StyleBox[
PaneBox[
TagBox[
PaneSelectorBox[{1->
GraphicsBox[
{PointSize[0.05],
PointBox[{{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {
0, 0}, {0, 0}, {0, 0}, {0, 0}},
VertexColors->{
Hue[0.1, 1, 1, 0.5],
Hue[0.2, 1, 1, 0.5],
Hue[0.3, 1, 1, 0.5],
Hue[0.4, 1, 1, 0.5],
Hue[0.5, 1, 1, 0.5],
Hue[0.6, 1, 1, 0.5],
Hue[0.7, 1, 1, 0.5],
Hue[0.8, 1, 1, 0.5],
Hue[0.9, 1, 1, 0.5],
Hue[1., 1, 1, 0.5]}], LineBox[{{-1, 0}, {25, 0}}],
InsetBox[
StyleBox["\<\"Steps N=1\"\>",
StripOnInput->False,
FontSize->Larger], {1.5, -4.6}]}], 2->
GraphicsBox[
{PointSize[0.05],
PointBox[{{1, 0}, {1, 0}, {1, 0}, {0, 0}, {0, 0}, {0, 0}, {
0, 0}, {1, 0}, {1, 0}, {1, 0}},
VertexColors->{
Hue[0.1, 1, 1, 0.5],
Hue[0.2, 1, 1, 0.5],
Hue[0.3, 1, 1, 0.5],
Hue[0.4, 1, 1, 0.5],
Hue[0.5, 1, 1, 0.5],
Hue[0.6, 1, 1, 0.5],
Hue[0.7, 1, 1, 0.5],
Hue[0.8, 1, 1, 0.5],
Hue[0.9, 1, 1, 0.5],
Hue[1., 1, 1, 0.5]}], LineBox[{{-1, 0}, {25, 0}}],
InsetBox[
StyleBox["\<\"Steps N=2\"\>",
StripOnInput->False,
FontSize->Larger], {1.5, -4.6}]}], 3->
GraphicsBox[
{PointSize[0.05],
PointBox[{{2, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {1, 0}, {
0, 0}, {2, 0}, {2, 0}, {2, 0}},
VertexColors->{
Hue[0.1, 1, 1, 0.5],
Hue[0.2, 1, 1, 0.5],
Hue[0.3, 1, 1, 0.5],
Hue[0.4, 1, 1, 0.5],
Hue[0.5, 1, 1, 0.5],
Hue[0.6, 1, 1, 0.5],
Hue[0.7, 1, 1, 0.5],
Hue[0.8, 1, 1, 0.5],
Hue[0.9, 1, 1, 0.5],
Hue[1., 1, 1, 0.5]}], LineBox[{{-1, 0}, {25, 0}}],
InsetBox[
StyleBox["\<\"Steps N=3\"\>",
StripOnInput->False,
FontSize->Larger], {1.5, -4.6}]}], 4->
GraphicsBox[
{PointSize[0.05],
PointBox[{{1, 0}, {0, 0}, {0, 0}, {1, 0}, {0, 0}, {2, 0}, {
0, 0}, {1, 0}, {1, 0}, {1, 0}},
VertexColors->{
Hue[0.1, 1, 1, 0.5],
Hue[0.2, 1, 1, 0.5],
Hue[0.3, 1, 1, 0.5],
Hue[0.4, 1, 1, 0.5],
Hue[0.5, 1, 1, 0.5],
Hue[0.6, 1, 1, 0.5],
Hue[0.7, 1, 1, 0.5],
Hue[0.8, 1, 1, 0.5],
Hue[0.9, 1, 1, 0.5],
Hue[1., 1, 1, 0.5]}], LineBox[{{-1, 0}, {25, 0}}],
InsetBox[
StyleBox["\<\"Steps N=4\"\>",
StripOnInput->False,
FontSize->Larger], {1.5, -4.6}]}], 5->
GraphicsBox[
{PointSize[0.05],
PointBox[{{0, 0}, {1, 0}, {0, 0}, {2, 0}, {0, 0}, {3, 0}, {
1, 0}, {0, 0}, {2, 0}, {2, 0}},
VertexColors->{
Hue[0.1, 1, 1, 0.5],
Hue[0.2, 1, 1, 0.5],
Hue[0.3, 1, 1, 0.5],
Hue[0.4, 1, 1, 0.5],
Hue[0.5, 1, 1, 0.5],
Hue[0.6, 1, 1, 0.5],
Hue[0.7, 1, 1, 0.5],
Hue[0.8, 1, 1, 0.5],
Hue[0.9, 1, 1, 0.5],
Hue[1., 1, 1, 0.5]}], LineBox[{{-1, 0}, {25, 0}}],
InsetBox[
StyleBox["\<\"Steps N=5\"\>",
StripOnInput->False,
FontSize->Larger], {1.5, -4.6}]}], 6->
GraphicsBox[
{PointSize[0.05],
PointBox[{{1, 0}, {2, 0}, {0, 0}, {3, 0}, {0, 0}, {2, 0}, {
2, 0}, {0, 0}, {1, 0}, {1, 0}},
VertexColors->{
Hue[0.1, 1, 1, 0.5],
Hue[0.2, 1, 1, 0.5],
Hue[0.3, 1, 1, 0.5],
Hue[0.4, 1, 1, 0.5],
Hue[0.5, 1, 1, 0.5],
Hue[0.6, 1, 1, 0.5],
Hue[0.7, 1, 1, 0.5],
Hue[0.8, 1, 1, 0.5],
Hue[0.9, 1, 1, 0.5],
Hue[1., 1, 1, 0.5]}], LineBox[{{-1, 0}, {25, 0}}],
InsetBox[
StyleBox["\<\"Steps N=6\"\>",
StripOnInput->False,
FontSize->Larger], {1.5, -4.6}]}], 7->
GraphicsBox[
{PointSize[0.05],
PointBox[{{0, 0}, {3, 0}, {1, 0}, {2, 0}, {0, 0}, {1, 0}, {
3, 0}, {0, 0}, {2, 0}, {0, 0}},
VertexColors->{
Hue[0.1, 1, 1, 0.5],
Hue[0.2, 1, 1, 0.5],
Hue[0.3, 1, 1, 0.5],
Hue[0.4, 1, 1, 0.5],
Hue[0.5, 1, 1, 0.5],
Hue[0.6, 1, 1, 0.5],
Hue[0.7, 1, 1, 0.5],
Hue[0.8, 1, 1, 0.5],
Hue[0.9, 1, 1, 0.5],
Hue[1., 1, 1, 0.5]}], LineBox[{{-1, 0}, {25, 0}}],
InsetBox[
StyleBox["\<\"Steps N=7\"\>",
StripOnInput->False,
FontSize->Larger], {1.5, -4.6}]}], 8->
GraphicsBox[
{PointSize[0.05],
PointBox[{{1, 0}, {2, 0}, {2, 0}, {1, 0}, {0, 0}, {2, 0}, {
4, 0}, {0, 0}, {3, 0}, {0, 0}},
VertexColors->{
Hue[0.1, 1, 1, 0.5],
Hue[0.2, 1, 1, 0.5],
Hue[0.3, 1, 1, 0.5],
Hue[0.4, 1, 1, 0.5],
Hue[0.5, 1, 1, 0.5],
Hue[0.6, 1, 1, 0.5],
Hue[0.7, 1, 1, 0.5],
Hue[0.8, 1, 1, 0.5],
Hue[0.9, 1, 1, 0.5],
Hue[1., 1, 1, 0.5]}], LineBox[{{-1, 0}, {25, 0}}],
InsetBox[
StyleBox["\<\"Steps N=8\"\>",
StripOnInput->False,
FontSize->Larger], {1.5, -4.6}]}], 9->
GraphicsBox[
{PointSize[0.05],
PointBox[{{2, 0}, {1, 0}, {3, 0}, {0, 0}, {0, 0}, {1, 0}, {
5, 0}, {1, 0}, {2, 0}, {0, 0}},
VertexColors->{
Hue[0.1, 1, 1, 0.5],
Hue[0.2, 1, 1, 0.5],
Hue[0.3, 1, 1, 0.5],
Hue[0.4, 1, 1, 0.5],
Hue[0.5, 1, 1, 0.5],
Hue[0.6, 1, 1, 0.5],
Hue[0.7, 1, 1, 0.5],
Hue[0.8, 1, 1, 0.5],
Hue[0.9, 1, 1, 0.5],
Hue[1., 1, 1, 0.5]}], LineBox[{{-1, 0}, {25, 0}}],
InsetBox[
StyleBox["\<\"Steps N=9\"\>",
StripOnInput->False,
FontSize->Larger], {1.5, -4.6}]}], 10->
GraphicsBox[
{PointSize[0.05],
PointBox[{{1, 0}, {0, 0}, {4, 0}, {1, 0}, {0, 0}, {0, 0}, {
6, 0}, {0, 0}, {1, 0}, {1, 0}},
VertexColors->{
Hue[0.1, 1, 1, 0.5],
Hue[0.2, 1, 1, 0.5],
Hue[0.3, 1, 1, 0.5],
Hue[0.4, 1, 1, 0.5],
Hue[0.5, 1, 1, 0.5],
Hue[0.6, 1, 1, 0.5],
Hue[0.7, 1, 1, 0.5],
Hue[0.8, 1, 1, 0.5],
Hue[0.9, 1, 1, 0.5],
Hue[1., 1, 1, 0.5]}], LineBox[{{-1, 0}, {25, 0}}],
InsetBox[
StyleBox["\<\"Steps N=10\"\>",
StripOnInput->False,
FontSize->Larger], {1.5, -4.6}]}], 11->
GraphicsBox[
{PointSize[0.05],
PointBox[{{0, 0}, {1, 0}, {3, 0}, {0, 0}, {0, 0}, {1, 0}, {
5, 0}, {0, 0}, {2, 0}, {0, 0}},
VertexColors->{
Hue[0.1, 1, 1, 0.5],
Hue[0.2, 1, 1, 0.5],
Hue[0.3, 1, 1, 0.5],
Hue[0.4, 1, 1, 0.5],
Hue[0.5, 1, 1, 0.5],
Hue[0.6, 1, 1, 0.5],
Hue[0.7, 1, 1, 0.5],
Hue[0.8, 1, 1, 0.5],
Hue[0.9, 1, 1, 0.5],
Hue[1., 1, 1, 0.5]}], LineBox[{{-1, 0}, {25, 0}}],
InsetBox[
StyleBox["\<\"Steps N=11\"\>",
StripOnInput->False,
FontSize->Larger], {1.5, -4.6}]}], 12->
GraphicsBox[
{PointSize[0.05],
PointBox[{{1, 0}, {0, 0}, {2, 0}, {0, 0}, {0, 0}, {2, 0}, {
6, 0}, {0, 0}, {1, 0}, {0, 0}},
VertexColors->{
Hue[0.1, 1, 1, 0.5],
Hue[0.2, 1, 1, 0.5],
Hue[0.3, 1, 1, 0.5],
Hue[0.4, 1, 1, 0.5],
Hue[0.5, 1, 1, 0.5],
Hue[0.6, 1, 1, 0.5],
Hue[0.7, 1, 1, 0.5],
Hue[0.8, 1, 1, 0.5],
Hue[0.9, 1, 1, 0.5],
Hue[1., 1, 1, 0.5]}], LineBox[{{-1, 0}, {25, 0}}],
InsetBox[
StyleBox["\<\"Steps N=12\"\>",
StripOnInput->False,
FontSize->Larger], {1.5, -4.6}]}], 13->
GraphicsBox[
{PointSize[0.05],
PointBox[{{0, 0}, {1, 0}, {1, 0}, {1, 0}, {1, 0}, {3, 0}, {
7, 0}, {1, 0}, {0, 0}, {1, 0}},
VertexColors->{
Hue[0.1, 1, 1, 0.5],
Hue[0.2, 1, 1, 0.5],
Hue[0.3, 1, 1, 0.5],
Hue[0.4, 1, 1, 0.5],
Hue[0.5, 1, 1, 0.5],
Hue[0.6, 1, 1, 0.5],
Hue[0.7, 1, 1, 0.5],
Hue[0.8, 1, 1, 0.5],
Hue[0.9, 1, 1, 0.5],
Hue[1., 1, 1, 0.5]}], LineBox[{{-1, 0}, {25, 0}}],
InsetBox[
StyleBox["\<\"Steps N=13\"\>",
StripOnInput->False,
FontSize->Larger], {1.5, -4.6}]}], 14->
GraphicsBox[
{PointSize[0.05],
PointBox[{{0, 0}, {0, 0}, {2, 0}, {0, 0}, {2, 0}, {2, 0}, {
6, 0}, {0, 0}, {0, 0}, {2, 0}},
VertexColors->{
Hue[0.1, 1, 1, 0.5],
Hue[0.2, 1, 1, 0.5],
Hue[0.3, 1, 1, 0.5],
Hue[0.4, 1, 1, 0.5],
Hue[0.5, 1, 1, 0.5],
Hue[0.6, 1, 1, 0.5],
Hue[0.7, 1, 1, 0.5],
Hue[0.8, 1, 1, 0.5],
Hue[0.9, 1, 1, 0.5],
Hue[1., 1, 1, 0.5]}], LineBox[{{-1, 0}, {25, 0}}],
InsetBox[
StyleBox["\<\"Steps N=14\"\>",
StripOnInput->False,
FontSize->Larger], {1.5, -4.6}]}], 15->
GraphicsBox[
{PointSize[0.05],
PointBox[{{0, 0}, {0, 0}, {3, 0}, {0, 0}, {1, 0}, {3, 0}, {
7, 0}, {0, 0}, {0, 0}, {1, 0}},
VertexColors->{
Hue[0.1, 1, 1, 0.5],
Hue[0.2, 1, 1, 0.5],
Hue[0.3, 1, 1, 0.5],
Hue[0.4, 1, 1, 0.5],
Hue[0.5, 1, 1, 0.5],
Hue[0.6, 1, 1, 0.5],
Hue[0.7, 1, 1, 0.5],
Hue[0.8, 1, 1, 0.5],
Hue[0.9, 1, 1, 0.5],
Hue[1., 1, 1, 0.5]}], LineBox[{{-1, 0}, {25, 0}}],
InsetBox[
StyleBox["\<\"Steps N=15\"\>",
StripOnInput->False,
FontSize->Larger], {1.5, -4.6}]}], 16->
GraphicsBox[
{PointSize[0.05],
PointBox[{{1, 0}, {1, 0}, {4, 0}, {0, 0}, {2, 0}, {2, 0}, {
8, 0}, {1, 0}, {1, 0}, {2, 0}},
VertexColors->{
Hue[0.1, 1, 1, 0.5],
Hue[0.2, 1, 1, 0.5],
Hue[0.3, 1, 1, 0.5],
Hue[0.4, 1, 1, 0.5],
Hue[0.5, 1, 1, 0.5],
Hue[0.6, 1, 1, 0.5],
Hue[0.7, 1, 1, 0.5],
Hue[0.8, 1, 1, 0.5],
Hue[0.9, 1, 1, 0.5],
Hue[1., 1, 1, 0.5]}], LineBox[{{-1, 0}, {25, 0}}],
InsetBox[
StyleBox["\<\"Steps N=16\"\>",
StripOnInput->False,
FontSize->Larger], {1.5, -4.6}]}], 17->
GraphicsBox[
{PointSize[0.05],
PointBox[{{2, 0}, {0, 0}, {5, 0}, {0, 0}, {3, 0}, {1, 0}, {
9, 0}, {0, 0}, {2, 0}, {1, 0}},
VertexColors->{
Hue[0.1, 1, 1, 0.5],
Hue[0.2, 1, 1, 0.5],
Hue[0.3, 1, 1, 0.5],
Hue[0.4, 1, 1, 0.5],
Hue[0.5, 1, 1, 0.5],
Hue[0.6, 1, 1, 0.5],
Hue[0.7, 1, 1, 0.5],
Hue[0.8, 1, 1, 0.5],
Hue[0.9, 1, 1, 0.5],
Hue[1., 1, 1, 0.5]}], LineBox[{{-1, 0}, {25, 0}}],
InsetBox[
StyleBox["\<\"Steps N=17\"\>",
StripOnInput->False,
FontSize->Larger], {1.5, -4.6}]}], 18->
GraphicsBox[
{PointSize[0.05],
PointBox[{{1, 0}, {1, 0}, {4, 0}, {0, 0}, {2, 0}, {0, 0}, {
10, 0}, {1, 0}, {3, 0}, {2, 0}},
VertexColors->{
Hue[0.1, 1, 1, 0.5],
Hue[0.2, 1, 1, 0.5],
Hue[0.3, 1, 1, 0.5],
Hue[0.4, 1, 1, 0.5],
Hue[0.5, 1, 1, 0.5],
Hue[0.6, 1, 1, 0.5],
Hue[0.7, 1, 1, 0.5],
Hue[0.8, 1, 1, 0.5],
Hue[0.9, 1, 1, 0.5],
Hue[1., 1, 1, 0.5]}], LineBox[{{-1, 0}, {25, 0}}],
InsetBox[
StyleBox["\<\"Steps N=18\"\>",
StripOnInput->False,
FontSize->Larger], {1.5, -4.6}]}], 19->
GraphicsBox[
{PointSize[0.05],
PointBox[{{2, 0}, {2, 0}, {5, 0}, {1, 0}, {1, 0}, {0, 0}, {
11, 0}, {0, 0}, {2, 0}, {1, 0}},
VertexColors->{
Hue[0.1, 1, 1, 0.5],
Hue[0.2, 1, 1, 0.5],
Hue[0.3, 1, 1, 0.5],
Hue[0.4, 1, 1, 0.5],
Hue[0.5, 1, 1, 0.5],
Hue[0.6, 1, 1, 0.5],
Hue[0.7, 1, 1, 0.5],
Hue[0.8, 1, 1, 0.5],
Hue[0.9, 1, 1, 0.5],
Hue[1., 1, 1, 0.5]}], LineBox[{{-1, 0}, {25, 0}}],
InsetBox[
StyleBox["\<\"Steps N=19\"\>",
StripOnInput->False,
FontSize->Larger], {1.5, -4.6}]}], 20->
GraphicsBox[
{PointSize[0.05],
PointBox[{{1, 0}, {1, 0}, {6, 0}, {2, 0}, {2, 0}, {0, 0}, {
10, 0}, {1, 0}, {3, 0}, {0, 0}},
VertexColors->{
Hue[0.1, 1, 1, 0.5],
Hue[0.2, 1, 1, 0.5],
Hue[0.3, 1, 1, 0.5],
Hue[0.4, 1, 1, 0.5],
Hue[0.5, 1, 1, 0.5],
Hue[0.6, 1, 1, 0.5],
Hue[0.7, 1, 1, 0.5],
Hue[0.8, 1, 1, 0.5],
Hue[0.9, 1, 1, 0.5],
Hue[1., 1, 1, 0.5]}], LineBox[{{-1, 0}, {25, 0}}],
InsetBox[
StyleBox["\<\"Steps N=20\"\>",
StripOnInput->False,
FontSize->Larger], {1.5, -4.6}]}], 21->
GraphicsBox[