Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

MethodError matching getϵ for AdvancedHMC Adaption #2400

Closed
gjgress opened this issue Nov 29, 2024 · 3 comments · Fixed by #2405
Closed

MethodError matching getϵ for AdvancedHMC Adaption #2400

gjgress opened this issue Nov 29, 2024 · 3 comments · Fixed by #2405
Labels

Comments

@gjgress
Copy link

gjgress commented Nov 29, 2024

Minimal working example

using Logging, LoggingExtras
using Turing
using Serialization
using OrdinaryDiffEq, StochasticDiffEq, DiffEqCallbacks
using SciMLBase.EnsembleAnalysis
using ForwardDiff, Preferences
set_preferences!(ForwardDiff, "nansafe_mode" => true)

model = Dict(:params => Dict(:Var1 => 10, :Var2 => 10, :Var3 => 10, :Var4 => 10, :Var5 => 10, :Var6 => 10, :Var7 => 10),
             :boundary => Dict(:Var1 => (8,12), :Var2 => (8,12), :Var3 => (8,12), :Var4 => (8,12), :Var5 => (8,12), :Var6 => (8,12), :Var7 => (8,12)),
             :data => DataFrame(y = [1,2,3]))

@model function fitmodel(data, t, model)#, paramsyms)
                

    # Prior distributions

    σ ~ InverseGamma(2,3)
    Var1 ~ truncated(Normal(model.params[:Var1], model.params[:Var1] * 0.5), model.boundary[:Var1]...)
    Var2 ~ truncated(Normal(model.params[:Var2], model.params[:Var2] * 0.5), model.boundary[:Var2]...)
    Var3 ~ truncated(Normal(model.params[:Var3], model.params[:Var3] * 0.5), model.boundary[:Var3]...)
    Var4 ~ truncated(Normal(model.params[:Var4],model.params[:Var4] * 0.5), model.boundary[:Var4]...)
    Var5 ~ truncated(Normal(model.params[:Var5], model.params[:Var5]*0.5), model.boundary[:Var5]...)
    Var6 ~ truncated(Normal(model.params[:Var6], model.params[:Var6]*0.5), model.boundary[:Var6]...)
    Var7 ~ truncated(Normal(model.params[:Var7], model.params[:Var7] * 0.5), model.boundary[:Var7]...)


    model.params[:Var1] = Var1
    model.params[:Var2] = Var2
    model.params[:Var3] = Var3
    model.params[:Var4] = Var4
    model.params[:Var5] = Var5
    model.params[:Var6] = Var6
    model.params[:Var7] = Var7

    # Simulate model

    ysim = ensemblesimulate(model) # ysim is an EnsembleSolution with multiple trajectories

    # Early exit if any trajectory could not be computed successfully.
    for i in eachindex(ysim)
        if !SciMLBase.successful_retcode(ysim[i])
            Turing.@addlogprob! -Inf
            return nothing
        end
    end

    predicted = [getindex.(componentwise_vectors_timepoint(ysim, t)[i].u, 1) for i in eachindex(ysim)] # Take the ensemble solution, get the interpolated values at all the timepoints of the original dataset with data, then organize the predicted ys into a list of vectors

    # Observations

    for i in eachindex(predicted)
        data ~ MvNormal(predicted[i], σ^2 * I)
    end

end;

mcmcmodel = fitmodel(model.data, 1:3, model)


n_iters = 1000

if !isfile("in-progress-chain.jls")

    chain = sample(mcmcmodel, NUTS(0.25), MCMCThreads(), n_iters, 4; progress = true, save_state = true, initial_params = repeat([[3, # Mean of InverseGamma(2,3)
                                                                                        model.params[:Var1],
                                                                                        model.params[:Var2],
                                                                                        model.params[:Var3],
                                                                                        model.params[:Var4],
                                                                                        model.params[:Var5],
                                                                                        model.params[:Var6],
                                                                                        model.params[:Var7]]], 4))

    serialize("in-progress-chain.jls", chain)

else

    println("In progress chain already exists, resuming previous chain")

    chain = deserialize("in-progress-chain.jls")

end

while length(chain) < 5*n_iters

    println("Chain currently has " * string(length(chain)) * " samples, resuming for another " * string(n_iters) * " samples.")

    last_state = chain.info.samplerstate
    chain_cont = sample(mcmcmodel, NUTS(0, 0.25), MCMCThreads(), n_iters, 4; progress = true, save_state = true, resume_state = chain)
    chain_cont = setrange(chain_cont, range(chain)[end] .+ range(chain))
    chain = vcat(chain, chain_cont) # Concatenate original chain with resumed chain to keep track of # of samples
    serialize("in-progress-chain.jls", chain)

end

serialize("finished-chain.jls", chain)
rm("in-progress-chain.jls")

Description

I'm getting a warning during my sampling with Turing, and I'm not sure if it's an artifact of using Logging/LoggingExtras with Turing, an actual issue with my sampling, or a bug in Turing. It occurs pretty much every sample. I couldn't find any info on it online either. Does anyone have any guidance on where this might be coming from?

Also perhaps worth noting is that the julia instance eventually is killed, due to running out of memory. I'm not sure if that's also because of this or because the message itself is logged so many times.

Full disclosure: the MWE I gave isn't a true MWE, namely I can't invest the time to write a MWE ensemble problem with StochasticDiffEqs, so I just left the blackbox ensemblesimulate() function instead. I don't think this is relevant to the error I'm getting, but I do apologize because it does make it harder to test with the MWE.

┌ Error: [2024-11-29 14:11:11]   Exception while generating log record in module Turing.Inference at /home/[user]/.julia/packages/Turing/bUZEC/src/mcmc/hmc.jl:246
│   exception =
│    MethodError: no method matching getϵ(::AdvancedHMC.Adaptation.NoAdaptation)
│    The function `getϵ` exists, but no method is defined for this combination of argument types.
│
│    Closest candidates are:getϵ(!Matched::AdvancedHMC.Adaptation.StanHMCAdaptor)
│       @ AdvancedHMC ~/.julia/packages/AdvancedHMC/sH6aj/src/adaptation/stan_adaptor.jl:94getϵ(!Matched::AdvancedHMC.Adaptation.NaiveHMCAdaptor)
│       @ AdvancedHMC ~/.julia/packages/AdvancedHMC/sH6aj/src/adaptation/Adaptation.jl:45getϵ(!Matched::AdvancedHMC.Adaptation.FixedStepSize)
│       @ AdvancedHMC ~/.julia/packages/AdvancedHMC/sH6aj/src/adaptation/stepsize.jl:56...
│
│    Stacktrace:
│      [1] getstepsize(sampler::DynamicPPL.Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, (), AdvancedHMC.DiagEuclideanMetric}}, state::Turing.Inference.HMCState{DynamicPPL.TypedVarInfo{@NamedTuple{σ::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:σ, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:σ, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var1, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var1, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var2, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var2, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var3, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var3, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var4, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var4, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var5::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var5, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var5, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var6::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var6, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var6, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var7::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var7, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var7, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityProblemsADForwardDiffExt.ForwardDiffLogDensity{LogDensityFunction{DynamicPPL.TypedVarInfo{@NamedTuple{σ::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:σ, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:σ, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var1, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var1, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var2, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var2, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var3, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var3, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var4, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var4, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var5::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var5, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var5, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var6::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var6, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var6, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var7::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var7, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var7, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}}, Float64}, DynamicPPL.Model{[CustomModule].var"#fitmodel#33"{Bool}, (:data, :t, :model), (), (), Tuple{SVector{95, Float64}, Vector{Float64}, model}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, (), AdvancedHMC.DiagEuclideanMetric}}, DynamicPPL.DefaultContext, Random.Xoshiro}}, ForwardDiff.Chunk{8}, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, ForwardDiff.GradientConfig{ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, Float64, 8, Vector{ForwardDiff.Dual{ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, Float64, 8}}}}}, Turing.Inference.var"#∂logπ∂θ#32"{LogDensityProblemsADForwardDiffExt.ForwardDiffLogDensity{LogDensityFunction{DynamicPPL.TypedVarInfo{@NamedTuple{σ::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:σ, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:σ, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var1, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var1, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var2, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var2, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var3, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var3, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var4, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var4, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var5::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var5, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var5, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var6::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var6, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var6, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var7::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var7, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var7, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}}, Float64}, DynamicPPL.Model{[CustomModule].var"#fitmodel#33"{Bool}, (:data, :t, :model), (), (), Tuple{SVector{95, Float64}, Vector{Float64}, model}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, (), AdvancedHMC.DiagEuclideanMetric}}, DynamicPPL.DefaultContext, Random.Xoshiro}}, ForwardDiff.Chunk{8}, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, ForwardDiff.GradientConfig{ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, Float64, 8, Vector{ForwardDiff.Dual{ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, Float64, 8}}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.NoAdaptation})
│        @ Turing.Inference ~/.julia/packages/Turing/bUZEC/src/mcmc/hmc.jl:460
│      [2] macro expansion
│        @ ./logging/logging.jl:384 [inlined]
│      [3] step(rng::Random.Xoshiro, model::DynamicPPL.Model{[CustomModule].var"#fitmodel#33"{Bool}, (:data, :t, :model), (), (), Tuple{SVector{95, Float64}, Vector{Float64}, model}, Tuple{}, DynamicPPL.DefaultContext}, spl::DynamicPPL.Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, (), AdvancedHMC.DiagEuclideanMetric}}, state::Turing.Inference.HMCState{DynamicPPL.TypedVarInfo{@NamedTuple{σ::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:σ, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:σ, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var1, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var1, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var2, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var2, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var3, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var3, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var4, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var4, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var5::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var5, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var5, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var6::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var6, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var6, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var7::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var7, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var7, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityProblemsADForwardDiffExt.ForwardDiffLogDensity{LogDensityFunction{DynamicPPL.TypedVarInfo{@NamedTuple{σ::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:σ, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:σ, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var1, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var1, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var2, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var2, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var3, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var3, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var4, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var4, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var5::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var5, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var5, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var6::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var6, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var6, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var7::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var7, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var7, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}}, Float64}, DynamicPPL.Model{[CustomModule].var"#fitmodel#33"{Bool}, (:data, :t, :model), (), (), Tuple{SVector{95, Float64}, Vector{Float64}, model}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, (), AdvancedHMC.DiagEuclideanMetric}}, DynamicPPL.DefaultContext, Random.Xoshiro}}, ForwardDiff.Chunk{8}, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, ForwardDiff.GradientConfig{ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, Float64, 8, Vector{ForwardDiff.Dual{ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, Float64, 8}}}}}, Turing.Inference.var"#∂logπ∂θ#32"{LogDensityProblemsADForwardDiffExt.ForwardDiffLogDensity{LogDensityFunction{DynamicPPL.TypedVarInfo{@NamedTuple{σ::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:σ, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:σ, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var1, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var1, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var2, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var2, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var3, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var3, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var4, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var4, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var5::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var5, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var5, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var6::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var6, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var6, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var7::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var7, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var7, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}}, Float64}, DynamicPPL.Model{[CustomModule].var"#fitmodel#33"{Bool}, (:data, :t, :model), (), (), Tuple{SVector{95, Float64}, Vector{Float64}, model}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, (), AdvancedHMC.DiagEuclideanMetric}}, DynamicPPL.DefaultContext, Random.Xoshiro}}, ForwardDiff.Chunk{8}, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, ForwardDiff.GradientConfig{ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, Float64, 8, Vector{ForwardDiff.Dual{ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, Float64, 8}}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.NoAdaptation}; nadapts::Int64, kwargs::@Kwargs{initial_params::Nothing, save_state::Bool, resume_state::Chains{Float64, AxisArrays.AxisArray{Float64, 3, Array{Float64, 3}, Tuple{AxisArrays.Axis{:iter, StepRange{Int64, Int64}}, AxisArrays.Axis{:var, Vector{Symbol}}, AxisArrays.Axis{:chain, UnitRange{Int64}}}}, Missing, @NamedTuple{parameters::Vector{Symbol}, internals::Vector{Symbol}}, @NamedTuple{varname_to_symbol::OrderedDict{AbstractPPL.VarName, Symbol}, model::DynamicPPL.Model{[CustomModule].var"#fitmodel#33"{Bool}, (:data, :t, :model), (), (), Tuple{SVector{95, Float64}, Vector{Float64}, model}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, (), AdvancedHMC.DiagEuclideanMetric}}, samplerstate::Turing.Inference.HMCState{DynamicPPL.TypedVarInfo{@NamedTuple{σ::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:σ, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:σ, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var1, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var1, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var2, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var2, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var3, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var3, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var4, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var4, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var5::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var5, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var5, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var6::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var6, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var6, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var7::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var7, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var7, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityProblemsADForwardDiffExt.ForwardDiffLogDensity{LogDensityFunction{DynamicPPL.TypedVarInfo{@NamedTuple{σ::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:σ, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:σ, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var1, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var1, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var2, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var2, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var3, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var3, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var4, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var4, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var5::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var5, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var5, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var6::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var6, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var6, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var7::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var7, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var7, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}}, Float64}, DynamicPPL.Model{[CustomModule].var"#fitmodel#33"{Bool}, (:data, :t, :model), (), (), Tuple{SVector{95, Float64}, Vector{Float64}, model}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, (), AdvancedHMC.DiagEuclideanMetric}}, DynamicPPL.DefaultContext, Random.Xoshiro}}, ForwardDiff.Chunk{8}, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, ForwardDiff.GradientConfig{ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, Float64, 8, Vector{ForwardDiff.Dual{ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, Float64, 8}}}}}, Turing.Inference.var"#∂logπ∂θ#32"{LogDensityProblemsADForwardDiffExt.ForwardDiffLogDensity{LogDensityFunction{DynamicPPL.TypedVarInfo{@NamedTuple{σ::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:σ, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:σ, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var1, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var1, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var2, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var2, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var3, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var3, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var4, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var4, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var5::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var5, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var5, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var6::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var6, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var6, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var7::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var7, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var7, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}}, Float64}, DynamicPPL.Model{[CustomModule].var"#fitmodel#33"{Bool}, (:data, :t, :model), (), (), Tuple{SVector{95, Float64}, Vector{Float64}, model}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, (), AdvancedHMC.DiagEuclideanMetric}}, DynamicPPL.DefaultContext, Random.Xoshiro}}, ForwardDiff.Chunk{8}, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, ForwardDiff.GradientConfig{ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, Float64, 8, Vector{ForwardDiff.Dual{ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, Float64, 8}}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64}}}, start_time::Vector{Float64}, stop_time::Vector{Float64}}}})
│        @ Turing.Inference ~/.julia/packages/Turing/bUZEC/src/mcmc/hmc.jl:246
│      [4] macro expansion
│        @ ~/.julia/packages/AbstractMCMC/jSkbw/src/sample.jl:217 [inlined]
│      [5] macro expansion
│        @ ~/.julia/packages/AbstractMCMC/jSkbw/src/logging.jl:16 [inlined]
│      [6] mcmcsample(rng::Random.Xoshiro, model::DynamicPPL.Model{[CustomModule].var"#fitmodel#33"{Bool}, (:data, :t, :model), (), (), Tuple{SVector{95, Float64}, Vector{Float64}, model}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, (), AdvancedHMC.DiagEuclideanMetric}}, N::Int64; progress::Bool, progressname::String, callback::Nothing, num_warmup::Int64, discard_initial::Int64, thinning::Int64, chain_type::Type, initial_state::Nothing, kwargs::@Kwargs{nadapts::Int64, initial_params::Nothing, save_state::Bool, resume_state::Chains{Float64, AxisArrays.AxisArray{Float64, 3, Array{Float64, 3}, Tuple{AxisArrays.Axis{:iter, StepRange{Int64, Int64}}, AxisArrays.Axis{:var, Vector{Symbol}}, AxisArrays.Axis{:chain, UnitRange{Int64}}}}, Missing, @NamedTuple{parameters::Vector{Symbol}, internals::Vector{Symbol}}, @NamedTuple{varname_to_symbol::OrderedDict{AbstractPPL.VarName, Symbol}, model::DynamicPPL.Model{[CustomModule].var"#fitmodel#33"{Bool}, (:data, :t, :model), (), (), Tuple{SVector{95, Float64}, Vector{Float64}, model}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, (), AdvancedHMC.DiagEuclideanMetric}}, samplerstate::Turing.Inference.HMCState{DynamicPPL.TypedVarInfo{@NamedTuple{σ::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:σ, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:σ, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var1, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var1, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var2, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var2, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var3, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var3, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var4, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var4, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var5::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var5, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var5, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var6::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var6, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var6, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var7::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var7, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var7, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityProblemsADForwardDiffExt.ForwardDiffLogDensity{LogDensityFunction{DynamicPPL.TypedVarInfo{@NamedTuple{σ::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:σ, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:σ, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var1, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var1, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var2, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var2, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var3, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var3, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var4, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var4, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var5::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var5, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var5, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var6::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var6, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var6, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var7::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var7, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var7, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}}, Float64}, DynamicPPL.Model{[CustomModule].var"#fitmodel#33"{Bool}, (:data, :t, :model), (), (), Tuple{SVector{95, Float64}, Vector{Float64}, model}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, (), AdvancedHMC.DiagEuclideanMetric}}, DynamicPPL.DefaultContext, Random.Xoshiro}}, ForwardDiff.Chunk{8}, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, ForwardDiff.GradientConfig{ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, Float64, 8, Vector{ForwardDiff.Dual{ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, Float64, 8}}}}}, Turing.Inference.var"#∂logπ∂θ#32"{LogDensityProblemsADForwardDiffExt.ForwardDiffLogDensity{LogDensityFunction{DynamicPPL.TypedVarInfo{@NamedTuple{σ::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:σ, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:σ, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var1, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var1, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var2, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var2, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var3, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var3, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var4, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var4, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var5::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var5, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var5, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var6::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var6, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var6, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var7::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var7, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var7, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}}, Float64}, DynamicPPL.Model{[CustomModule].var"#fitmodel#33"{Bool}, (:data, :t, :model), (), (), Tuple{SVector{95, Float64}, Vector{Float64}, model}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, (), AdvancedHMC.DiagEuclideanMetric}}, DynamicPPL.DefaultContext, Random.Xoshiro}}, ForwardDiff.Chunk{8}, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, ForwardDiff.GradientConfig{ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, Float64, 8, Vector{ForwardDiff.Dual{ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, Float64, 8}}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64}}}, start_time::Vector{Float64}, stop_time::Vector{Float64}}}})
│        @ AbstractMCMC ~/.julia/packages/AbstractMCMC/jSkbw/src/sample.jl:142
│      [7] mcmcsample
│        @ ~/.julia/packages/AbstractMCMC/jSkbw/src/sample.jl:107 [inlined]
│      [8] #sample#30
│        @ ~/.julia/packages/Turing/bUZEC/src/mcmc/hmc.jl:113 [inlined]
│      [9] sample
│        @ ~/.julia/packages/Turing/bUZEC/src/mcmc/hmc.jl:82 [inlined]
│     [10] (::AbstractMCMC.var"#35#48"{DynamicPPL.Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, (), AdvancedHMC.DiagEuclideanMetric}}, DynamicPPL.Model{[CustomModule].var"#fitmodel#33"{Bool}, (:data, :t, :model), (), (), Tuple{SVector{95, Float64}, Vector{Float64}, model}, Tuple{}, DynamicPPL.DefaultContext}, Random.Xoshiro, UnitRange{Int64}, Bool, Nothing, Nothing, @Kwargs{chain_type::UnionAll, save_state::Bool, resume_state::Chains{Float64, AxisArrays.AxisArray{Float64, 3, Array{Float64, 3}, Tuple{AxisArrays.Axis{:iter, StepRange{Int64, Int64}}, AxisArrays.Axis{:var, Vector{Symbol}}, AxisArrays.Axis{:chain, UnitRange{Int64}}}}, Missing, @NamedTuple{parameters::Vector{Symbol}, internals::Vector{Symbol}}, @NamedTuple{varname_to_symbol::OrderedDict{AbstractPPL.VarName, Symbol}, model::DynamicPPL.Model{[CustomModule].var"#fitmodel#33"{Bool}, (:data, :t, :model), (), (), Tuple{SVector{95, Float64}, Vector{Float64}, model}, Tuple{}, DynamicPPL.DefaultContext}, sampler::DynamicPPL.Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, (), AdvancedHMC.DiagEuclideanMetric}}, samplerstate::Turing.Inference.HMCState{DynamicPPL.TypedVarInfo{@NamedTuple{σ::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:σ, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:σ, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var1, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var1, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var2, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var2, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var3, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var3, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var4, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var4, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var5::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var5, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var5, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var6::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var6, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var6, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var7::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var7, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var7, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}}, Float64}, AdvancedHMC.HMCKernel{AdvancedHMC.FullMomentumRefreshment, AdvancedHMC.Trajectory{AdvancedHMC.MultinomialTS, AdvancedHMC.Leapfrog{Float64}, AdvancedHMC.GeneralisedNoUTurn{Float64}}}, AdvancedHMC.Hamiltonian{AdvancedHMC.DiagEuclideanMetric{Float64, Vector{Float64}}, AdvancedHMC.GaussianKinetic, Base.Fix1{typeof(LogDensityProblems.logdensity), LogDensityProblemsADForwardDiffExt.ForwardDiffLogDensity{LogDensityFunction{DynamicPPL.TypedVarInfo{@NamedTuple{σ::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:σ, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:σ, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var1, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var1, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var2, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var2, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var3, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var3, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var4, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var4, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var5::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var5, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var5, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var6::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var6, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var6, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var7::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var7, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var7, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}}, Float64}, DynamicPPL.Model{[CustomModule].var"#fitmodel#33"{Bool}, (:data, :t, :model), (), (), Tuple{SVector{95, Float64}, Vector{Float64}, model}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, (), AdvancedHMC.DiagEuclideanMetric}}, DynamicPPL.DefaultContext, Random.Xoshiro}}, ForwardDiff.Chunk{8}, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, ForwardDiff.GradientConfig{ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, Float64, 8, Vector{ForwardDiff.Dual{ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, Float64, 8}}}}}, Turing.Inference.var"#∂logπ∂θ#32"{LogDensityProblemsADForwardDiffExt.ForwardDiffLogDensity{LogDensityFunction{DynamicPPL.TypedVarInfo{@NamedTuple{σ::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:σ, typeof(identity)}, Int64}, Vector{InverseGamma{Float64}}, Vector{AbstractPPL.VarName{:σ, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var1::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var1, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var1, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var2::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var2, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var2, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var3::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var3, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var3, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var4::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var4, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var4, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var5::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var5, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var5, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var6::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var6, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var6, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}, Var7::DynamicPPL.Metadata{Dict{AbstractPPL.VarName{:Var7, typeof(identity)}, Int64}, Vector{Truncated{Normal{Float64}, Continuous, Float64, Float64, Float64}}, Vector{AbstractPPL.VarName{:Var7, typeof(identity)}}, Vector{Float64}, Vector{Set{DynamicPPL.Selector}}}}, Float64}, DynamicPPL.Model{[CustomModule].var"#fitmodel#33"{Bool}, (:data, :t, :model), (), (), Tuple{SVector{95, Float64}, Vector{Float64}, model}, Tuple{}, DynamicPPL.DefaultContext}, DynamicPPL.SamplingContext{DynamicPPL.Sampler{NUTS{AutoForwardDiff{nothing, Nothing}, (), AdvancedHMC.DiagEuclideanMetric}}, DynamicPPL.DefaultContext, Random.Xoshiro}}, ForwardDiff.Chunk{8}, ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, ForwardDiff.GradientConfig{ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, Float64, 8, Vector{ForwardDiff.Dual{ForwardDiff.Tag{DynamicPPL.DynamicPPLTag, Float64}, Float64, 8}}}}}}, AdvancedHMC.PhasePoint{Vector{Float64}, AdvancedHMC.DualValue{Float64, Vector{Float64}}}, AdvancedHMC.Adaptation.StanHMCAdaptor{AdvancedHMC.Adaptation.WelfordVar{Float64, Vector{Float64}}, AdvancedHMC.Adaptation.NesterovDualAveraging{Float64}}}, start_time::Vector{Float64}, stop_time::Vector{Float64}}}}, Int64, Vector{Any}, Vector{UInt64}})()
│        @ AbstractMCMC ~/.julia/packages/AbstractMCMC/jSkbw/src/sample.jl:463
└ @ Turing.Inference ~/.julia/packages/Turing/bUZEC/src/mcmc/hmc.jl:246

Julia version info

versioninfo()
Julia Version 1.11.1
Commit 8f5b7ca12ad (2024-10-16 10:53 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 16 × AMD Ryzen 7 5700X3D 8-Core Processor
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 16 default, 0 interactive, 8 GC (on 16 virtual cores)
Environment:
  JULIA_EDITOR = code

Manifest

]st --manifest
  [47edcb42] ADTypes v1.11.0
  [621f4979] AbstractFFTs v1.5.0
  [80f14c24] AbstractMCMC v5.6.0
  [7a57a42e] AbstractPPL v0.9.0
  [1520ce14] AbstractTrees v0.4.5
  [7d9f7c33] Accessors v0.1.38
  [79e6a3ab] Adapt v4.1.1
  [0bf59076] AdvancedHMC v0.6.4
  [5b7e9947] AdvancedMH v0.8.4
  [576499cb] AdvancedPS v0.6.0
  [b5ca4192] AdvancedVI v0.2.10
  [66dad0bd] AliasTables v1.1.3
  [dce04be8] ArgCheck v2.4.0
  [ec485272] ArnoldiMethod v0.4.0
  [4fba245c] ArrayInterface v7.17.1
  [4c555306] ArrayLayouts v1.10.4
⌅ [a9b6321e] Atomix v0.1.0
  [13072b0f] AxisAlgorithms v1.1.0
  [39de3d68] AxisArrays v0.4.7
  [198e06fe] BangBang v0.4.3
  [9718e550] Baselet v0.1.1
⌅ [76274a88] Bijectors v0.14.2
  [62783981] BitTwiddlingConvenienceFunctions v0.1.6
  [fa961155] CEnum v0.5.0
  [2a0fbf3d] CPUSummary v0.2.6
  [082447d4] ChainRules v1.72.1
  [d360d2e6] ChainRulesCore v1.25.0
  [9e997f8a] ChangesOfVariables v0.1.9
  [fb6a15b2] CloseOpenIntervals v0.1.13
  [861a8166] Combinatorics v1.0.2
  [38540f10] CommonSolve v0.2.4
  [bbf7d656] CommonSubexpressions v0.3.1
  [f70d9fcc] CommonWorldInvalidations v1.0.0
  [34da2185] Compat v4.16.0
  [a33af91c] CompositionsBase v0.1.2
  [2569d6c7] ConcreteStructs v0.2.3
  [88cd18e8] ConsoleProgressMonitor v0.1.2
  [187b0558] ConstructionBase v1.5.8
  [adafc99b] CpuId v0.3.1
  [a8cc5b0e] Crayons v4.1.1
  [9a962f9c] DataAPI v1.16.0
  [864edb3b] DataStructures v0.18.20
  [e2d170a0] DataValueInterfaces v1.0.0
  [244e2a9f] DefineSingletons v0.1.2
  [8bb1440f] DelimitedFiles v1.9.1
  [b429d917] DensityInterface v0.4.0
  [2b5f629d] DiffEqBase v6.160.0
  [459566f4] DiffEqCallbacks v4.2.2
  [77a26b50] DiffEqNoiseProcess v5.23.0
  [163ba53b] DiffResults v1.1.0
  [b552c78f] DiffRules v1.15.1
  [a0c0ee7d] DifferentiationInterface v0.6.23
  [b4f34e82] Distances v0.10.12
  [31c24e10] Distributions v0.25.113
  [ced4e74d] DistributionsAD v0.6.57
  [ffbed154] DocStringExtensions v0.9.3
  [366bfd00] DynamicPPL v0.30.5
  [cad2338a] EllipticalSliceSampling v2.0.0
  [4e289a0a] EnumX v1.0.4
⌃ [f151be2c] EnzymeCore v0.7.8
  [d4d017d3] ExponentialUtilities v1.27.0
  [e2ba6199] ExprTools v0.1.10
⌅ [6b7a57c9] Expronicon v0.8.5
  [7a1cc6ca] FFTW v1.8.0
  [7034ab61] FastBroadcast v0.3.5
  [9aa1b823] FastClosures v0.3.2
  [29a986be] FastLapackInterface v2.0.4
  [a4df4552] FastPower v1.1.1
  [1a297f60] FillArrays v1.13.0
  [6a86dc24] FiniteDiff v2.26.2
  [f6369f11] ForwardDiff v0.10.38
  [069b7b12] FunctionWrappers v1.1.3
  [77dc65aa] FunctionWrappersWrappers v0.1.3
  [d9f16b24] Functors v0.5.2
⌅ [46192b85] GPUArraysCore v0.1.6
  [c145ed77] GenericSchur v0.5.4
  [86223c79] Graphs v1.12.0
  [3e5b6fbb] HostCPUFeatures v0.1.17
  [34004b35] HypergeometricFunctions v0.3.25
  [615f187c] IfElse v0.1.1
  [d25df0c9] Inflate v0.1.5
  [22cec73e] InitialValues v0.3.1
  [505f98c9] InplaceOps v0.3.0
  [a98d9a8b] Interpolations v0.15.1
  [8197267c] IntervalSets v0.7.10
  [3587e190] InverseFunctions v0.1.17
  [41ab1584] InvertedIndices v1.3.0
  [92d709cd] IrrationalConstants v0.2.2
  [c8e1da08] IterTools v1.10.0
  [82899510] IteratorInterfaceExtensions v1.0.0
  [692b3bcd] JLLWrappers v1.6.1
  [682c06a0] JSON v0.21.4
  [ccbc3e58] JumpProcesses v9.14.0
  [ef3ab10e] KLU v0.6.0
  [63c18a36] KernelAbstractions v0.9.29
  [5ab0869b] KernelDensity v0.6.9
  [ba0b0d4f] Krylov v0.9.8
  [5be7bae1] LBFGSB v0.4.1
  [929cbde3] LLVM v9.1.3
  [8ac3fa9e] LRUCache v1.6.1
  [b964fa9f] LaTeXStrings v1.4.0
  [10f19ff3] LayoutPointers v0.1.17
  [5078a376] LazyArrays v2.2.3
  [1d6d02ad] LeftChildRightSiblingTrees v0.2.0
  [2d8b4e74] LevyArea v1.0.0
  [6f1fad26] Libtask v0.8.8
  [d3d80556] LineSearches v7.3.0
⌃ [7ed4a6bd] LinearSolve v2.34.0
  [6fdf6af0] LogDensityProblems v2.1.2
  [996a588d] LogDensityProblemsAD v1.13.0
  [2ab3a3ac] LogExpFunctions v0.3.28
  [e6f89c97] LoggingExtras v1.1.0
  [bdcacae8] LoopVectorization v0.12.171
  [c7f686f2] MCMCChains v6.0.6
  [be115224] MCMCDiagnosticTools v0.3.12
  [e80e1ace] MLJModelInterface v1.11.0
  [d8e11817] MLStyle v0.4.17
  [1914dd2f] MacroTools v0.5.13
  [d125e4d3] ManualMemory v0.1.8
  [dbb5928d] MappedArrays v0.4.2
  [bb5d69b7] MaybeInplace v0.1.4
  [128add7d] MicroCollections v0.2.0
  [e1d29d7a] Missings v1.2.0
  [46d2c3a1] MuladdMacro v0.2.4
  [d41bc354] NLSolversBase v7.8.3
  [2774e3e8] NLsolve v4.5.1
  [872c559c] NNlib v0.9.26
  [77ba4419] NaNMath v1.0.2
  [86f7a689] NamedArrays v0.10.3
  [c020b1a1] NaturalSort v1.0.0
⌃ [8913a72c] NonlinearSolve v3.14.0
  [6fe1bfb0] OffsetArrays v1.14.1
  [429524aa] Optim v1.10.0
⌃ [3bd65402] Optimisers v0.4.0
  [7f7a1694] Optimization v4.0.5
  [bca83a33] OptimizationBase v2.4.0
  [36348300] OptimizationOptimJL v0.4.1
  [bac558e1] OrderedCollections v1.7.0
  [1dea7af3] OrdinaryDiffEq v6.90.1
  [89bda076] OrdinaryDiffEqAdamsBashforthMoulton v1.1.0
  [6ad6398a] OrdinaryDiffEqBDF v1.1.2
  [bbf590c4] OrdinaryDiffEqCore v1.12.1
  [50262376] OrdinaryDiffEqDefault v1.1.0
  [4302a76b] OrdinaryDiffEqDifferentiation v1.2.0
  [9286f039] OrdinaryDiffEqExplicitRK v1.1.0
  [e0540318] OrdinaryDiffEqExponentialRK v1.1.0
  [becaefa8] OrdinaryDiffEqExtrapolation v1.2.1
  [5960d6e9] OrdinaryDiffEqFIRK v1.5.0
  [101fe9f7] OrdinaryDiffEqFeagin v1.1.0
  [d3585ca7] OrdinaryDiffEqFunctionMap v1.1.1
  [d28bc4f8] OrdinaryDiffEqHighOrderRK v1.1.0
  [9f002381] OrdinaryDiffEqIMEXMultistep v1.1.0
  [521117fe] OrdinaryDiffEqLinear v1.1.0
  [1344f307] OrdinaryDiffEqLowOrderRK v1.2.0
  [b0944070] OrdinaryDiffEqLowStorageRK v1.2.1
  [127b3ac7] OrdinaryDiffEqNonlinearSolve v1.2.4
  [c9986a66] OrdinaryDiffEqNordsieck v1.1.0
  [5dd0a6cf] OrdinaryDiffEqPDIRK v1.1.0
  [5b33eab2] OrdinaryDiffEqPRK v1.1.0
  [04162be5] OrdinaryDiffEqQPRK v1.1.0
  [af6ede74] OrdinaryDiffEqRKN v1.1.0
  [43230ef6] OrdinaryDiffEqRosenbrock v1.3.1
  [2d112036] OrdinaryDiffEqSDIRK v1.1.0
  [669c94d9] OrdinaryDiffEqSSPRK v1.2.0
  [e3e12d00] OrdinaryDiffEqStabilizedIRK v1.1.0
  [358294b1] OrdinaryDiffEqStabilizedRK v1.1.0
  [fa646aed] OrdinaryDiffEqSymplecticRK v1.1.0
  [b1df2697] OrdinaryDiffEqTsit5 v1.1.0
  [79d7bb75] OrdinaryDiffEqVerner v1.1.1
  [90014a1f] PDMats v0.11.31
  [65ce6f38] PackageExtensionCompat v1.0.2
  [d96e819e] Parameters v0.12.3
  [69de0a69] Parsers v2.8.1
  [e409e4f3] PoissonRandom v0.4.4
  [f517fe37] Polyester v0.7.16
  [1d0040c9] PolyesterWeave v0.2.2
  [85a6dd25] PositiveFactorizations v0.2.4
  [d236fae5] PreallocationTools v0.4.24
  [aea7be01] PrecompileTools v1.2.1
  [21216c6a] Preferences v1.4.3
  [08abe8d2] PrettyTables v2.4.0
  [33c8b6b6] ProgressLogging v0.1.4
  [92933f4c] ProgressMeter v1.10.2
  [43287f4e] PtrArrays v1.2.1
  [1fd47b50] QuadGK v2.11.1
  [74087812] Random123 v1.7.0
  [e6cf234a] RandomNumbers v1.6.0
  [b3c3ace0] RangeArrays v0.3.2
  [c84ed2f1] Ratios v0.4.5
  [c1ae055f] RealDot v0.1.0
  [3cdcf5f2] RecipesBase v1.3.4
  [731186ca] RecursiveArrayTools v3.27.4
  [f2c3362d] RecursiveFactorization v0.2.23
  [189a3867] Reexport v1.2.2
  [ae029012] Requires v1.3.0
  [ae5879a3] ResettableStacks v1.1.1
  [79098fc4] Rmath v0.8.0
  [f2b01f46] Roots v2.2.2
  [7e49a35a] RuntimeGeneratedFunctions v0.5.13
  [94e857df] SIMDTypes v0.1.0
  [476501e8] SLEEFPirates v0.6.43
⌅ [26aad666] SSMProblems v0.1.1
  [0bca4576] SciMLBase v2.64.0
  [c0aeaf25] SciMLOperators v0.3.12
  [53ae85a6] SciMLStructures v1.6.1
  [30f210dd] ScientificTypesBase v3.0.0
  [efcf1570] Setfield v1.1.1
⌅ [727e6d20] SimpleNonlinearSolve v1.12.3
  [699a6c99] SimpleTraits v0.9.4
  [ce78b400] SimpleUnPack v1.1.0
  [a2af1166] SortingAlgorithms v1.2.1
  [9f842d2f] SparseConnectivityTracer v0.6.9
  [47a9eef4] SparseDiffTools v2.23.0
  [dc90abb0] SparseInverseSubset v0.1.2
  [0a514795] SparseMatrixColorings v0.4.10
  [e56a9233] Sparspak v0.3.9
  [276daf66] SpecialFunctions v2.4.0
  [171d559e] SplittablesBase v0.1.15
  [aedffcd0] Static v1.1.1
  [0d7ed370] StaticArrayInterface v1.8.0
  [90137ffa] StaticArrays v1.9.8
  [1e83bf80] StaticArraysCore v1.4.3
  [64bff920] StatisticalTraits v3.4.0
  [10745b16] Statistics v1.11.1
  [82ae8749] StatsAPI v1.7.0
  [2913bbd2] StatsBase v0.34.3
  [4c63d2b9] StatsFuns v1.3.2
  [789caeaf] StochasticDiffEq v6.71.1
  [7792a7ef] StrideArraysCore v0.5.7
  [892a3eda] StringManipulation v0.4.0
⌃ [09ab397b] StructArrays v0.6.18
  [2efcf032] SymbolicIndexingInterface v0.3.35
  [3783bdb8] TableTraits v1.0.1
  [bd369af6] Tables v1.12.0
  [5d786b92] TerminalLoggers v0.1.7
  [8290d209] ThreadingUtilities v0.5.2
  [a759f4b9] TimerOutputs v0.5.25
  [9f7883ad] Tracker v0.2.37
  [28d57a85] Transducers v0.4.84
  [d5829a12] TriangularSolve v0.2.1
  [781d530d] TruncatedStacktraces v1.4.0
  [fce5fe82] Turing v0.35.2
  [3a884ed6] UnPack v1.0.2
  [013be700] UnsafeAtomics v0.2.1
  [d80eeb9a] UnsafeAtomicsLLVM v0.2.1
  [3d5dd08c] VectorizationBase v0.21.71
  [19fa3120] VertexSafeGraphs v0.2.0
  [efce3f68] WoodburyMatrices v1.0.0
  [700de1a5] ZygoteRules v0.2.5
  [f5851436] FFTW_jll v3.3.10+1
  [1d5cc7b8] IntelOpenMP_jll v2024.2.1+0
  [dad2f222] LLVMExtra_jll v0.0.34+0
  [81d17ec3] L_BFGS_B_jll v3.0.1+0
  [856f044c] MKL_jll v2024.2.0+0
  [efe28fd5] OpenSpecFun_jll v0.5.5+0
  [f50d1b31] Rmath_jll v0.5.1+0
  [1317d2d5] oneTBB_jll v2021.12.0+0
  [0dad84c5] ArgTools v1.1.2
  [56f22d72] Artifacts v1.11.0
  [2a0f44e3] Base64 v1.11.0
  [ade2ca70] Dates v1.11.0
  [8ba89e20] Distributed v1.11.0
  [f43a241f] Downloads v1.6.0
  [7b1f6079] FileWatching v1.11.0
  [9fa8497b] Future v1.11.0
  [b77e0a4c] InteractiveUtils v1.11.0
  [4af54fe1] LazyArtifacts v1.11.0
  [b27032c2] LibCURL v0.6.4
  [76f85450] LibGit2 v1.11.0
  [8f399da3] Libdl v1.11.0
  [37e2e46d] LinearAlgebra v1.11.0
  [56ddb016] Logging v1.11.0
  [d6f4376e] Markdown v1.11.0
  [a63ad114] Mmap v1.11.0
  [ca575930] NetworkOptions v1.2.0
  [44cfe95a] Pkg v1.11.0
  [de0858da] Printf v1.11.0
  [9a3f8284] Random v1.11.0
  [ea8e919c] SHA v0.7.0
  [9e88b42a] Serialization v1.11.0
  [1a1011a3] SharedArrays v1.11.0
  [6462fe0b] Sockets v1.11.0
  [2f01184e] SparseArrays v1.11.0
  [4607b0f0] SuiteSparse
  [fa267f1f] TOML v1.0.3
  [a4e569a6] Tar v1.10.0
  [8dfed614] Test v1.11.0
  [cf7118a7] UUIDs v1.11.0
  [4ec0a83e] Unicode v1.11.0
  [e66e0078] CompilerSupportLibraries_jll v1.1.1+0
  [deac9b47] LibCURL_jll v8.6.0+0
  [e37daf67] LibGit2_jll v1.7.2+0
  [29816b5a] LibSSH2_jll v1.11.0+1
  [c8ffd9c3] MbedTLS_jll v2.28.6+0
  [14a3606d] MozillaCACerts_jll v2023.12.12
  [4536629a] OpenBLAS_jll v0.3.27+1
  [05823500] OpenLibm_jll v0.8.1+2
  [bea87d4a] SuiteSparse_jll v7.7.0+0
  [83775a58] Zlib_jll v1.2.13+1
  [8e850b90] libblastrampoline_jll v5.11.0+0
  [8e850ede] nghttp2_jll v1.59.0+0
  [3f19e933] p7zip_jll v17.4.0+2
@gjgress gjgress added the bug label Nov 29, 2024
@penelopeysm
Copy link
Member

Hi @gjgress!

The issue is the call to @debug here, although the stack trace seems to have meddled with the line numbers a bit

Turing.jl/src/mcmc/hmc.jl

Lines 250 to 251 in f3b2476

# Get step size
@debug "current ϵ" getstepsize(spl, state)

The issue is when you use NUTS(0, 0.25) it gets initialised with an adaptor of AdvancedHMC.Adaptation.NoAdaptation

Turing.jl/src/mcmc/hmc.jl

Lines 540 to 546 in f3b2476

function AHMCAdaptor(alg::AdaptiveHamiltonian, metric::AHMC.AbstractMetric; ϵ=alg.ϵ)
pc = AHMC.MassMatrixAdaptor(metric)
da = AHMC.StepSizeAdaptor(alg.δ, ϵ)
if iszero(alg.n_adapts)
adaptor = AHMC.Adaptation.NoAdaptation()
else

and getstepsize() doesn't work on this. So the MWE is actually just

using Turing

ENV["JULIA_DEBUG"] = "Turing"
@model f() = x ~ Normal()
model = f()
sample(model, NUTS(0, 0.25), 10)

A quick fix for you would be to define this method somewhere in your code:

using Turing
using AdvancedHMC.Adaptation: NoAdaptation

function Turing.Inference.getstepsize(
    sampler::DynamicPPL.Sampler{<:Turing.Inference.AdaptiveHamiltonian},
    state::Turing.Inference.HMCState{TV,TKernel,THam,PhType,NoAdaptation}
) where {TV,TKernel,THam,PhType}
    return state.kernel.τ.integrator.ϵ
end

And on our end the fix would be to include that method so that you don't need to define it, although a fix probably won't land until next week.

@gjgress
Copy link
Author

gjgress commented Nov 30, 2024

@penelopeysm Ohh, thanks! Good catch. In hindsight I should have noticed the change appearing when I started running sampling with no burn-ins.

I wish I could contribute, but it looks like you all already have things taken care of. Appreciate the quick solution too.

@gjgress gjgress closed this as completed Nov 30, 2024
@penelopeysm
Copy link
Member

No problem! Your example was already really useful. Thanks for reporting :)

This fix was so small I didn't think to ask about whether you might want to do the PR, sorry 😅 I'll remember next time!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

Successfully merging a pull request may close this issue.

2 participants