-
Notifications
You must be signed in to change notification settings - Fork 10
/
train_ReID_classifier_con.py
executable file
·348 lines (271 loc) · 16 KB
/
train_ReID_classifier_con.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
# this is a modification based on the train_image_classifier.py
# ==============================================================================
"""Generic training script that trains a ReID model using a given dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import os
import time
from tensorflow.python.ops import control_flow_ops
import dataset_factory
import model_deploy
from nets import nets_factory
import tensorflow.contrib.slim as slim
from utils import config_and_print_log, _configure_learning_rate, _configure_optimizer, _get_variables_to_train, _get_init_fn, get_img_func, build_graph, get_pair_type
##############
# FLags may be usually changed #
##############
tf.app.flags.DEFINE_string('model_name', 'resnet_v1_distributions_baseline_50', 'The name of the architecture to train.')
tf.app.flags.DEFINE_boolean('entropy_loss', False, 'uncertainty loss')
tf.app.flags.DEFINE_integer('max_number_of_steps', 20200, 'The maximum number of training steps.')
tf.app.flags.DEFINE_string('target', 'market', 'For name of model')
tf.app.flags.DEFINE_boolean('standard', False, 'For name of model')
tf.app.flags.DEFINE_string('set', 'bounding_box_train', "subset under current dataset")
tf.app.flags.DEFINE_integer('boot_weight', 1.0, 'cross entropy loss weight')
tf.app.flags.DEFINE_float('sampled_ce_loss_weight', None, 'loss weight for xent of drawn samples.')
tf.app.flags.DEFINE_integer('sample_number', None, 'the number of samples drawn from distribution.')
tf.app.flags.DEFINE_boolean('resume_train', True, 'when set to true, resume training from current train dir or load dir.')
tf.app.flags.DEFINE_string('dataset_name', 'Market', 'The name of the Person ReID dataset to load.')
tf.app.flags.DEFINE_string('dataset_dir', './Market/',
'The directory where the dataset files are stored.')
tf.app.flags.DEFINE_string('checkpoint_path2', '',
'The path to a checkpoint from which to fine-tune.')
tf.app.flags.DEFINE_float('learning_rate', 0.00005, 'Initial learning rate.')
tf.app.flags.DEFINE_float('end_learning_rate', 0.00001, 'The minimal end learning rate used by a polynomial decay learning rate.')
tf.app.flags.DEFINE_string('trainable_scopes', 'resnet_v1_50/Distributions, resnet_v1_50/logits, resnet_v1_50/block4/', 'Comma-separated list of scopes to filter the set of variables to train. By default, None would train all the variables.')
tf.app.flags.DEFINE_string('checkpoint_exclude_scopes', ['Distributions'], 'Comma-separated list of scopes of variables to exclude when restoring from a checkpoint.')
#####################
###The following flags are fixed all the time
#####################
tf.app.flags.DEFINE_boolean('use_clf', True, 'Add classification (identification) loss to the network.')
tf.app.flags.DEFINE_string('master', '', 'The address of the TensorFlow master to use.')
tf.app.flags.DEFINE_string('train_dir', './result',
'Directory where checkpoints and event logs are written to.')
tf.app.flags.DEFINE_string('sub_dir', '', 'Subdirectory to identify the sv dir')
tf.app.flags.DEFINE_integer('num_clones', 1, 'Number of model clones to deploy.')
tf.app.flags.DEFINE_boolean('clone_on_cpu', False, 'Use CPUs to deploy clones.')
tf.app.flags.DEFINE_integer('worker_replicas', 1, 'Number of worker replicas.')
tf.app.flags.DEFINE_integer('num_ps_tasks', 0, 'The number of parameter servers. If the value is 0, then the '
'parameters are handled locally by the worker.')
# readers number
tf.app.flags.DEFINE_integer('num_readers', 4, 'The number of parallel readers that read data from the dataset.')
tf.app.flags.DEFINE_integer('num_preprocessing_threads', 4, 'The number of threads used to create the batches.')
tf.app.flags.DEFINE_integer('log_every_n_steps', 100, 'The frequency with which logs are print.')
tf.app.flags.DEFINE_integer('task', 0, 'Task id of the replica running the training.')
######################
# Optimization Flags #
######################
tf.app.flags.DEFINE_float('weight_decay', 0.0001, 'The weight decay on the model weights.')
tf.app.flags.DEFINE_string('optimizer', 'adam', 'The name of the optimizer, one of "adadelta", "adagrad", "adam", '
'"ftrl", "momentum", "sgd" or "rmsprop".')
tf.app.flags.DEFINE_float('adam_beta1', 0.9, 'The exponential decay rate for the 1st moment estimates.')
tf.app.flags.DEFINE_float('adam_beta2', 0.999, 'The exponential decay rate for the 2nd moment estimates.')
tf.app.flags.DEFINE_float('opt_epsilon', 1e-5, 'Epsilon term for the optimizer.')
#######################
# Learning Rate Flags #
#######################
tf.app.flags.DEFINE_string('learning_rate_decay_type', 'exponential', 'Specifies how the learning rate is decayed. One'
' of "fixed", "exponential", or "polynomial"')
tf.app.flags.DEFINE_float('label_smoothing', 0.1, 'The amount of label smoothing.')
tf.app.flags.DEFINE_float('learning_rate_decay_factor', 0.95, 'Learning rate decay factor.')
tf.app.flags.DEFINE_float('num_epochs_per_decay', 2.0, 'Number of epochs after which learning rate decays.')
tf.app.flags.DEFINE_bool('sync_replicas', False, 'Whether or not to synchronize the replicas during training.')
tf.app.flags.DEFINE_integer('replicas_to_aggregate', 1, 'The Number of gradients to collect before updating params.')
tf.app.flags.DEFINE_float('moving_average_decay', None, 'The decay to use for the moving average. If left as None, '
'then moving averages are not used.')
#######################
# Dataset Flags #
#######################
tf.app.flags.DEFINE_string('source', None, 'detected, labeled, mixed')
tf.app.flags.DEFINE_integer('split_num', None, '0-19')
tf.app.flags.DEFINE_integer('cam_num', None, '6 cams or 10 cams.')
tf.app.flags.DEFINE_boolean('hd_data', False, 'using high resolution image data for training.')
tf.app.flags.DEFINE_integer('labels_offset', 0, 'An offset for the labels in the dataset. This flag is primarily used '
'to evaluate the VGG and ResNet architectures which do not use a '
'background class for the ImageNet dataset.')
tf.app.flags.DEFINE_string('model_scope', '', 'The name scope of given model.')
tf.app.flags.DEFINE_string('preprocessing_name', None, 'The name of the preprocessing to use. If left as `None`, then '
'the model_name flag is used.')
tf.app.flags.DEFINE_integer('batch_size', 32, 'The number of samples in each batch.')
tf.app.flags.DEFINE_integer('batch_k', 4, 'The number of samples for each class (identity) in each batch.')
tf.app.flags.DEFINE_string('shuffle_order', 'T', 'whether shuffle the batch order. T for Ture; F for False')
tf.app.flags.DEFINE_integer('aug_mode', 3, 'data augumentation(1,2,3)')
tf.app.flags.DEFINE_boolean('rand_erase', False, 'random erasing the image to augment the data')
tf.app.flags.DEFINE_integer('test_mode', 1, 'testing 1: central crop 2: (coner crops + central crop +) flips')
tf.app.flags.DEFINE_integer('train_image_height', 256, 'Crop Height')
tf.app.flags.DEFINE_integer('train_image_width', 128, 'Crop Width')
tf.app.flags.DEFINE_integer('summary_snapshot_steps', 20000, 'Summary save steps.')
tf.app.flags.DEFINE_integer('model_snapshot_steps', 10000, 'Model save steps.')
#####################
# Fine-Tuning Flags #
#####################
tf.app.flags.DEFINE_string('checkpoint_path', None, 'The path to a checkpoint from which to fine-tune.')
tf.app.flags.DEFINE_boolean('imagenet_pretrain', True, 'Using imagenet pretrained model to initialise.')
tf.app.flags.DEFINE_boolean('ignore_missing_vars', False, 'When restoring a checkpoint would ignore missing variables.')
###############
# Other Flags #
###############
tf.app.flags.DEFINE_boolean('log_device_placement', False, "Whether to log device placement.")
FLAGS = tf.app.flags.FLAGS
##############################################
# Main Training Fuction #
##############################################
def main(_):
if not os.path.isdir(FLAGS.train_dir):
os.makedirs(FLAGS.train_dir)
if not FLAGS.dataset_dir:
raise ValueError('You must supply the dataset directory with --dataset_dir')
if not FLAGS.aug_mode:
raise ValueError('aug_mode need to be speficied.')
if (not FLAGS.train_image_height) or (not FLAGS.train_image_width):
raise ValueError('The image height and width must be define explicitly.')
if FLAGS.hd_data:
if FLAGS.train_image_height != 400 or FLAGS.train_image_width != 200:
FLAGS.train_image_height, FLAGS.train_image_width = 400, 200
print("set the image size to (%d, %d)" % (400, 200))
# config and print log
config_and_print_log(FLAGS)
tf.logging.set_verbosity(tf.logging.INFO)
with tf.Graph().as_default():
#######################
# Config model_deploy #
#######################
deploy_config = model_deploy.DeploymentConfig(
num_clones=FLAGS.num_clones,
clone_on_cpu=FLAGS.clone_on_cpu,
replica_id=FLAGS.task,
num_replicas=FLAGS.worker_replicas,
num_ps_tasks=FLAGS.num_ps_tasks)
# Create global_step
with tf.device(deploy_config.variables_device()):
global_step = slim.create_global_step()
#####################################
# Select the preprocessing function #
#####################################
img_func = get_img_func()
######################
# Select the dataset #
######################
dataset = dataset_factory.DataLoader(FLAGS.model_name, FLAGS.dataset_name, FLAGS.dataset_dir, FLAGS.set, FLAGS.hd_data, img_func,
FLAGS.batch_size, FLAGS.batch_k, FLAGS.max_number_of_steps, get_pair_type())
######################
# Select the network #
######################
network_fn = nets_factory.get_network_fn(
FLAGS.model_name,
num_classes=(dataset.num_classes - FLAGS.labels_offset),
weight_decay=FLAGS.weight_decay,
is_training=True,
sample_number= FLAGS.sample_number
)
####################
# Define the model #
####################
def clone_fn(tf_batch_queue):
return build_graph(tf_batch_queue, network_fn)
clones = model_deploy.create_clones(deploy_config, clone_fn, [dataset.tf_batch_queue])
first_clone_scope = deploy_config.clone_scope(0)
# Gather update_ops from the first clone. These contain, for example,
# the updates for the batch_norm variables created by network_fn.
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope)
loss_dict = {}
for loss in tf.get_collection(tf.GraphKeys.LOSSES, first_clone_scope):
if loss.name == 'softmax_cross_entropy_loss/value:0':
loss_dict['clf'] = loss
elif 'softmax_cross_entropy_loss' in loss.name:
loss_dict['sample_clf_'+str(loss.name.split('/')[0].split('_')[-1])] = loss
elif 'entropy' in loss.name:
loss_dict['entropy'] = loss
else:
raise Exception('Loss type error')
#################################
# Configure the moving averages #
#################################
if FLAGS.moving_average_decay:
moving_average_variables = slim.get_model_variables()
variable_averages = tf.train.ExponentialMovingAverage(
FLAGS.moving_average_decay, global_step)
else:
moving_average_variables, variable_averages = None, None
#########################################
# Configure the optimization procedure. #
#########################################
with tf.device(deploy_config.optimizer_device()):
learning_rate = _configure_learning_rate(dataset.num_samples, global_step, FLAGS)
optimizer = _configure_optimizer(learning_rate)
if FLAGS.sync_replicas:
# If sync_replicas is enabled, the averaging will be done in the chief
# queue runner.
optimizer = tf.train.SyncReplicasOptimizer(
opt=optimizer,
replicas_to_aggregate=FLAGS.replicas_to_aggregate,
variable_averages=variable_averages,
variables_to_average=moving_average_variables,
replica_id=tf.constant(FLAGS.task, tf.int32, shape=()),
total_num_replicas=FLAGS.worker_replicas)
elif FLAGS.moving_average_decay:
# Update ops executed locally by trainer.
update_ops.append(variable_averages.apply(moving_average_variables))
# Variables to train.
variables_to_train = _get_variables_to_train()
# and returns a train_tensor and summary_op
# total_loss is the sum of all LOSSES and REGULARIZATION_LOSSES in tf.GraphKeys
total_loss, clones_gradients = model_deploy.optimize_clones(
clones,
optimizer,
var_list=variables_to_train)
# Create gradient updates.
grad_updates = optimizer.apply_gradients(clones_gradients,
global_step=global_step)
update_ops.append(grad_updates)
update_op = tf.group(*update_ops)
train_tensor = control_flow_ops.with_dependencies([update_op], total_loss,
name='train_op')
train_tensor_list = [train_tensor]
format_str = 'step %d, loss = %.2f'
for loss_key in sorted(loss_dict.keys()):
train_tensor_list.append(loss_dict[loss_key])
format_str += (', %s_loss = ' % loss_key + '%.8f')
format_str += ' (%.1f examples/sec; %.3f sec/batch)'
# Create a saver.
saver = tf.train.Saver(tf.global_variables(),max_to_keep=1)
checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
###########################
# Kicks off the training. #
###########################
# Build an initialization operation to run below.
init = tf.global_variables_initializer()
# Start running operations on the Graph. allow_soft_placement must be set to
# True to build towers on GPU, as some of the ops do not have GPU
# implementations.
sess = tf.Session(config=tf.ConfigProto(
allow_soft_placement=True,
log_device_placement=FLAGS.log_device_placement))
sess.run(init)
# load pretrained weights
if FLAGS.checkpoint_path is not None:
print("Load the pretrained weights")
weight_ini_fn = _get_init_fn()
weight_ini_fn(sess)
else:
print("Train from the scratch")
# Start the queue runners.
tf.train.start_queue_runners(sess=sess)
# for step in xrange(FLAGS.max_number_of_steps):
for step in xrange(FLAGS.max_number_of_steps + 1):
start_time = time.time()
loss_value_list = sess.run(train_tensor_list, feed_dict=dataset.get_feed_dict())
duration = time.time() - start_time
if step % FLAGS.log_every_n_steps == 0:
num_examples_per_step = FLAGS.batch_size
examples_per_sec = num_examples_per_step / duration
sec_per_batch = duration
print(format_str % tuple([step] + loss_value_list + [examples_per_sec, sec_per_batch]))
# Save the model checkpoint periodically.
# if step % FLAGS.model_snapshot_steps == 0 or (step + 1) == FLAGS.max_number_of_steps:
if step % FLAGS.model_snapshot_steps == 0:
saver.save(sess, checkpoint_path, global_step=step)
print('OK...')
if __name__ == '__main__':
tf.app.run()