-
Notifications
You must be signed in to change notification settings - Fork 0
/
trpo.py
432 lines (379 loc) · 20.4 KB
/
trpo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
import copy
import warnings
from functools import partial
from typing import Any, ClassVar, Dict, List, Optional, Tuple, Type, TypeVar, Union
import numpy as np
import torch as th
from gymnasium import spaces
from stable_baselines3.common.buffers import RolloutBuffer
from stable_baselines3.common.distributions import kl_divergence
from stable_baselines3.common.on_policy_algorithm import OnPolicyAlgorithm
from stable_baselines3.common.policies import ActorCriticPolicy, BasePolicy
from stable_baselines3.common.type_aliases import GymEnv, MaybeCallback, RolloutBufferSamples, Schedule
from stable_baselines3.common.utils import explained_variance
from torch import nn
from torch.nn import functional as F
from sb3_contrib.common.utils import conjugate_gradient_solver, flat_grad
from sb3_contrib.trpo.policies import CnnPolicy, MlpPolicy, MultiInputPolicy
SelfTRPO = TypeVar("SelfTRPO", bound="TRPO")
class TRPO(OnPolicyAlgorithm):
"""
Trust Region Policy Optimization (TRPO)
Paper: https://arxiv.org/abs/1502.05477
Code: This implementation borrows code from OpenAI Spinning Up (https://github.com/openai/spinningup/)
and Stable Baselines (TRPO from https://github.com/hill-a/stable-baselines)
Introduction to TRPO: https://spinningup.openai.com/en/latest/algorithms/trpo.html
:param policy: The policy model to use (MlpPolicy, CnnPolicy, ...)
:param env: The environment to learn from (if registered in Gym, can be str)
:param learning_rate: The learning rate for the value function, it can be a function
of the current progress remaining (from 1 to 0)
:param n_steps: The number of steps to run for each environment per update
(i.e. rollout buffer size is n_steps * n_envs where n_envs is number of environment copies running in parallel)
NOTE: n_steps * n_envs must be greater than 1 (because of the advantage normalization)
See https://github.com/pytorch/pytorch/issues/29372
:param batch_size: Minibatch size for the value function
:param gamma: Discount factor
:param cg_max_steps: maximum number of steps in the Conjugate Gradient algorithm
for computing the Hessian vector product
:param cg_damping: damping in the Hessian vector product computation
:param line_search_shrinking_factor: step-size reduction factor for the line-search
(i.e., ``theta_new = theta + alpha^i * step``)
:param line_search_max_iter: maximum number of iteration
for the backtracking line-search
:param n_critic_updates: number of critic updates per policy update
:param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator
:param use_sde: Whether to use generalized State Dependent Exploration (gSDE)
instead of action noise exploration (default: False)
:param sde_sample_freq: Sample a new noise matrix every n steps when using gSDE
Default: -1 (only sample at the beginning of the rollout)
:param rollout_buffer_class: Rollout buffer class to use. If ``None``, it will be automatically selected.
:param rollout_buffer_kwargs: Keyword arguments to pass to the rollout buffer on creation
:param normalize_advantage: Whether to normalize or not the advantage
:param target_kl: Target Kullback-Leibler divergence between updates.
Should be small for stability. Values like 0.01, 0.05.
:param sub_sampling_factor: Sub-sample the batch to make computation faster
see p40-42 of John Schulman thesis http://joschu.net/docs/thesis.pdf
:param stats_window_size: Window size for the rollout logging, specifying the number of episodes to average
the reported success rate, mean episode length, and mean reward over
:param tensorboard_log: the log location for tensorboard (if None, no logging)
:param policy_kwargs: additional arguments to be passed to the policy on creation
:param verbose: the verbosity level: 0 no output, 1 info, 2 debug
:param seed: Seed for the pseudo random generators
:param device: Device (cpu, cuda, ...) on which the code should be run.
Setting it to auto, the code will be run on the GPU if possible.
:param _init_setup_model: Whether or not to build the network at the creation of the instance
"""
policy_aliases: ClassVar[Dict[str, Type[BasePolicy]]] = {
"MlpPolicy": MlpPolicy,
"CnnPolicy": CnnPolicy,
"MultiInputPolicy": MultiInputPolicy,
}
def __init__(
self,
policy: Union[str, Type[ActorCriticPolicy]],
env: Union[GymEnv, str],
learning_rate: Union[float, Schedule] = 1e-3,
n_steps: int = 2048,
batch_size: int = 128,
#THIS
theta: float = 0.01,
sigma: float = 0.4,
gamma: float = 0.99,
cg_max_steps: int = 15,
cg_damping: float = 0.1,
line_search_shrinking_factor: float = 0.8,
line_search_max_iter: int = 10,
n_critic_updates: int = 10,
gae_lambda: float = 0.95,
use_sde: bool = False,
sde_sample_freq: int = -1,
rollout_buffer_class: Optional[Type[RolloutBuffer]] = None,
rollout_buffer_kwargs: Optional[Dict[str, Any]] = None,
normalize_advantage: bool = True,
target_kl: float = 0.01,
sub_sampling_factor: int = 1,
stats_window_size: int = 100,
tensorboard_log: Optional[str] = None,
policy_kwargs: Optional[Dict[str, Any]] = None,
verbose: int = 0,
seed: Optional[int] = None,
device: Union[th.device, str] = "auto",
_init_setup_model: bool = True,
):
super().__init__(
policy,
env,
learning_rate=learning_rate,
n_steps=n_steps,
theta=theta,
sigma=sigma,
gamma=gamma,
gae_lambda=gae_lambda,
ent_coef=0.0, # entropy bonus is not used by TRPO
vf_coef=0.0, # value function is optimized separately
max_grad_norm=0.0,
use_sde=use_sde,
sde_sample_freq=sde_sample_freq,
rollout_buffer_class=rollout_buffer_class,
rollout_buffer_kwargs=rollout_buffer_kwargs,
stats_window_size=stats_window_size,
tensorboard_log=tensorboard_log,
policy_kwargs=policy_kwargs,
verbose=verbose,
device=device,
seed=seed,
_init_setup_model=False,
supported_action_spaces=(
spaces.Box,
spaces.Discrete,
spaces.MultiDiscrete,
spaces.MultiBinary,
),
)
self.normalize_advantage = normalize_advantage
# Sanity check, otherwise it will lead to noisy gradient and NaN
# because of the advantage normalization
if self.env is not None:
# Check that `n_steps * n_envs > 1` to avoid NaN
# when doing advantage normalization
buffer_size = self.env.num_envs * self.n_steps
if normalize_advantage:
assert buffer_size > 1, (
"`n_steps * n_envs` must be greater than 1. "
f"Currently n_steps={self.n_steps} and n_envs={self.env.num_envs}"
)
# Check that the rollout buffer size is a multiple of the mini-batch size
untruncated_batches = buffer_size // batch_size
if buffer_size % batch_size > 0:
warnings.warn(
f"You have specified a mini-batch size of {batch_size},"
f" but because the `RolloutBuffer` is of size `n_steps * n_envs = {buffer_size}`,"
f" after every {untruncated_batches} untruncated mini-batches,"
f" there will be a truncated mini-batch of size {buffer_size % batch_size}\n"
f"We recommend using a `batch_size` that is a factor of `n_steps * n_envs`.\n"
f"Info: (n_steps={self.n_steps} and n_envs={self.env.num_envs})"
)
self.batch_size = batch_size
# Conjugate gradients parameters
self.cg_max_steps = cg_max_steps
self.cg_damping = cg_damping
# Backtracking line search parameters
self.line_search_shrinking_factor = line_search_shrinking_factor
self.line_search_max_iter = line_search_max_iter
self.target_kl = target_kl
self.n_critic_updates = n_critic_updates
self.sub_sampling_factor = sub_sampling_factor
if _init_setup_model:
self._setup_model()
def _compute_actor_grad(
self, kl_div: th.Tensor, policy_objective: th.Tensor
) -> Tuple[List[nn.Parameter], th.Tensor, th.Tensor, List[Tuple[int, ...]]]:
"""
Compute actor gradients for kl div and surrogate objectives.
:param kl_div: The KL divergence objective
:param policy_objective: The surrogate objective ("classic" policy gradient)
:return: List of actor params, gradients and gradients shape.
"""
# This is necessary because not all the parameters in the policy have gradients w.r.t. the KL divergence
# The policy objective is also called surrogate objective
policy_objective_gradients_list = []
# Contains the gradients of the KL divergence
grad_kl_list = []
# Contains the shape of the gradients of the KL divergence w.r.t each parameter
# This way the flattened gradient can be reshaped back into the original shapes and applied to
# the parameters
grad_shape: List[Tuple[int, ...]] = []
# Contains the parameters which have non-zeros KL divergence gradients
# The list is used during the line-search to apply the step to each parameters
actor_params: List[nn.Parameter] = []
for name, param in self.policy.named_parameters():
# Skip parameters related to value function based on name
# this work for built-in policies only (not custom ones)
if "value" in name:
continue
# For each parameter we compute the gradient of the KL divergence w.r.t to that parameter
kl_param_grad, *_ = th.autograd.grad(
kl_div,
param,
create_graph=True,
retain_graph=True,
allow_unused=True,
only_inputs=True,
)
# If the gradient is not zero (not None), we store the parameter in the actor_params list
# and add the gradient and its shape to grad_kl and grad_shape respectively
if kl_param_grad is not None:
# If the parameter impacts the KL divergence (i.e. the policy)
# we compute the gradient of the policy objective w.r.t to the parameter
# this avoids computing the gradient if it's not going to be used in the conjugate gradient step
policy_objective_grad, *_ = th.autograd.grad(policy_objective, param, retain_graph=True, only_inputs=True)
grad_shape.append(kl_param_grad.shape)
grad_kl_list.append(kl_param_grad.reshape(-1))
policy_objective_gradients_list.append(policy_objective_grad.reshape(-1))
actor_params.append(param)
# Gradients are concatenated before the conjugate gradient step
policy_objective_gradients = th.cat(policy_objective_gradients_list)
grad_kl = th.cat(grad_kl_list)
return actor_params, policy_objective_gradients, grad_kl, grad_shape
def train(self) -> None:
"""
Update policy using the currently gathered rollout buffer.
"""
# Switch to train mode (this affects batch norm / dropout)
self.policy.set_training_mode(True)
# Update optimizer learning rate
self._update_learning_rate(self.policy.optimizer)
policy_objective_values = []
kl_divergences = []
line_search_results = []
value_losses = []
# This will only loop once (get all data in one go)
for rollout_data in self.rollout_buffer.get(batch_size=None):
# Optional: sub-sample data for faster computation
if self.sub_sampling_factor > 1:
rollout_data = RolloutBufferSamples(
rollout_data.observations[:: self.sub_sampling_factor],
rollout_data.actions[:: self.sub_sampling_factor],
None, # type: ignore[arg-type] # old values, not used here
rollout_data.old_log_prob[:: self.sub_sampling_factor],
rollout_data.advantages[:: self.sub_sampling_factor],
None, # type: ignore[arg-type] # returns, not used here
)
actions = rollout_data.actions
if isinstance(self.action_space, spaces.Discrete):
# Convert discrete action from float to long
actions = rollout_data.actions.long().flatten()
# Re-sample the noise matrix because the log_std has changed
if self.use_sde:
# batch_size is only used for the value function
self.policy.reset_noise(actions.shape[0])
with th.no_grad():
# Note: is copy enough, no need for deepcopy?
# If using gSDE and deepcopy, we need to use `old_distribution.distribution`
# directly to avoid PyTorch errors.
old_distribution = copy.copy(self.policy.get_distribution(rollout_data.observations))
distribution = self.policy.get_distribution(rollout_data.observations)
log_prob = distribution.log_prob(actions)
advantages = rollout_data.advantages
if self.normalize_advantage:
advantages = (advantages - advantages.mean()) / (rollout_data.advantages.std() + 1e-8)
# ratio between old and new policy, should be one at the first iteration
ratio = th.exp(log_prob - rollout_data.old_log_prob)
# surrogate policy objective
policy_objective = (advantages * ratio).mean()
# KL divergence
kl_div = kl_divergence(distribution, old_distribution).mean()
# Surrogate & KL gradient
self.policy.optimizer.zero_grad()
actor_params, policy_objective_gradients, grad_kl, grad_shape = self._compute_actor_grad(kl_div, policy_objective)
# Hessian-vector dot product function used in the conjugate gradient step
hessian_vector_product_fn = partial(self.hessian_vector_product, actor_params, grad_kl)
# Computing search direction
search_direction = conjugate_gradient_solver(
hessian_vector_product_fn,
policy_objective_gradients,
max_iter=self.cg_max_steps,
)
# Maximal step length
line_search_max_step_size = 2 * self.target_kl
line_search_max_step_size /= th.matmul(
search_direction, hessian_vector_product_fn(search_direction, retain_graph=False)
)
line_search_max_step_size = th.sqrt(line_search_max_step_size) # type: ignore[assignment, arg-type]
line_search_backtrack_coeff = 1.0
original_actor_params = [param.detach().clone() for param in actor_params]
is_line_search_success = False
with th.no_grad():
# Line-search (backtracking)
for _ in range(self.line_search_max_iter):
start_idx = 0
# Applying the scaled step direction
for param, original_param, shape in zip(actor_params, original_actor_params, grad_shape):
n_params = param.numel()
param.data = (
original_param.data
+ line_search_backtrack_coeff
* line_search_max_step_size
* search_direction[start_idx : (start_idx + n_params)].view(shape)
)
start_idx += n_params
# Recomputing the policy log-probabilities
distribution = self.policy.get_distribution(rollout_data.observations)
log_prob = distribution.log_prob(actions)
# New policy objective
ratio = th.exp(log_prob - rollout_data.old_log_prob)
new_policy_objective = (advantages * ratio).mean()
# New KL-divergence
kl_div = kl_divergence(distribution, old_distribution).mean()
# Constraint criteria:
# we need to improve the surrogate policy objective
# while being close enough (in term of kl div) to the old policy
if (kl_div < self.target_kl) and (new_policy_objective > policy_objective):
is_line_search_success = True
break
# Reducing step size if line-search wasn't successful
line_search_backtrack_coeff *= self.line_search_shrinking_factor
line_search_results.append(is_line_search_success)
if not is_line_search_success:
# If the line-search wasn't successful we revert to the original parameters
for param, original_param in zip(actor_params, original_actor_params):
param.data = original_param.data.clone()
policy_objective_values.append(policy_objective.item())
kl_divergences.append(0.0)
else:
policy_objective_values.append(new_policy_objective.item())
kl_divergences.append(kl_div.item())
# Critic update
for _ in range(self.n_critic_updates):
for rollout_data in self.rollout_buffer.get(self.batch_size):
values_pred = self.policy.predict_values(rollout_data.observations)
value_loss = F.mse_loss(rollout_data.returns, values_pred.flatten())
value_losses.append(value_loss.item())
self.policy.optimizer.zero_grad()
value_loss.backward()
# Removing gradients of parameters shared with the actor
# otherwise it defeats the purposes of the KL constraint
for param in actor_params:
param.grad = None
self.policy.optimizer.step()
self._n_updates += 1
explained_var = explained_variance(self.rollout_buffer.values.flatten(), self.rollout_buffer.returns.flatten())
# Logs
self.logger.record("train/policy_objective", np.mean(policy_objective_values))
self.logger.record("train/value_loss", np.mean(value_losses))
self.logger.record("train/kl_divergence_loss", np.mean(kl_divergences))
self.logger.record("train/explained_variance", explained_var)
self.logger.record("train/is_line_search_success", np.mean(line_search_results))
if hasattr(self.policy, "log_std"):
self.logger.record("train/std", th.exp(self.policy.log_std).mean().item())
self.logger.record("train/n_updates", self._n_updates, exclude="tensorboard")
def hessian_vector_product(
self, params: List[nn.Parameter], grad_kl: th.Tensor, vector: th.Tensor, retain_graph: bool = True
) -> th.Tensor:
"""
Computes the matrix-vector product with the Fisher information matrix.
:param params: list of parameters used to compute the Hessian
:param grad_kl: flattened gradient of the KL divergence between the old and new policy
:param vector: vector to compute the dot product the hessian-vector dot product with
:param retain_graph: if True, the graph will be kept after computing the Hessian
:return: Hessian-vector dot product (with damping)
"""
jacobian_vector_product = (grad_kl * vector).sum()
return flat_grad(jacobian_vector_product, params, retain_graph=retain_graph) + self.cg_damping * vector
def learn(
self: SelfTRPO,
total_timesteps: int,
callback: MaybeCallback = None,
log_interval: int = 1,
tb_log_name: str = "TRPO",
reset_num_timesteps: bool = True,
progress_bar: bool = False,
) -> SelfTRPO:
return super().learn(
total_timesteps=total_timesteps,
callback=callback,
log_interval=log_interval,
tb_log_name=tb_log_name,
reset_num_timesteps=reset_num_timesteps,
progress_bar=progress_bar,
)