-
Notifications
You must be signed in to change notification settings - Fork 19.4k
/
QuickSelect.java
125 lines (106 loc) · 4.18 KB
/
QuickSelect.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
package com.thealgorithms.searches;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
import java.util.Objects;
/**
* An implementation of the Quickselect algorithm as described
* <a href="https://en.wikipedia.org/wiki/Median_of_medians">here</a>.
*/
public final class QuickSelect {
private QuickSelect() {
}
/**
* Selects the {@code n}-th largest element of {@code list}, i.e. the element that would
* be at index n if the list was sorted.
* <p>
* Calling this function might change the order of elements in {@code list}.
*
* @param list the list of elements
* @param n the index
* @param <T> the type of list elements
* @return the n-th largest element in the list
* @throws IndexOutOfBoundsException if n is less than 0 or greater or equal to
* the number of elements in the list
* @throws IllegalArgumentException if the list is empty
* @throws NullPointerException if {@code list} is null
*/
public static <T extends Comparable<T>> T select(List<T> list, int n) {
Objects.requireNonNull(list, "The list of elements must not be null.");
if (list.isEmpty()) {
String msg = "The list of elements must not be empty.";
throw new IllegalArgumentException(msg);
}
if (n < 0) {
String msg = "The index must not be negative.";
throw new IndexOutOfBoundsException(msg);
}
if (n >= list.size()) {
String msg = "The index must be less than the number of elements.";
throw new IndexOutOfBoundsException(msg);
}
int index = selectIndex(list, n);
return list.get(index);
}
private static <T extends Comparable<T>> int selectIndex(List<T> list, int n) {
return selectIndex(list, 0, list.size() - 1, n);
}
private static <T extends Comparable<T>> int selectIndex(List<T> list, int left, int right, int n) {
while (true) {
if (left == right) {
return left;
}
int pivotIndex = pivot(list, left, right);
pivotIndex = partition(list, left, right, pivotIndex, n);
if (n == pivotIndex) {
return n;
} else if (n < pivotIndex) {
right = pivotIndex - 1;
} else {
left = pivotIndex + 1;
}
}
}
private static <T extends Comparable<T>> int partition(List<T> list, int left, int right, int pivotIndex, int n) {
T pivotValue = list.get(pivotIndex);
Collections.swap(list, pivotIndex, right);
int storeIndex = left;
for (int i = left; i < right; i++) {
if (list.get(i).compareTo(pivotValue) < 0) {
Collections.swap(list, storeIndex, i);
storeIndex++;
}
}
int storeIndexEq = storeIndex;
for (int i = storeIndex; i < right; i++) {
if (list.get(i).compareTo(pivotValue) == 0) {
Collections.swap(list, storeIndexEq, i);
storeIndexEq++;
}
}
Collections.swap(list, right, storeIndexEq);
return (n < storeIndex) ? storeIndex : Math.min(n, storeIndexEq);
}
private static <T extends Comparable<T>> int pivot(List<T> list, int left, int right) {
if (right - left < 5) {
return partition5(list, left, right);
}
for (int i = left; i < right; i += 5) {
int subRight = i + 4;
if (subRight > right) {
subRight = right;
}
int median5 = partition5(list, i, subRight);
int rightIndex = left + (i - left) / 5;
Collections.swap(list, median5, rightIndex);
}
int mid = (right - left) / 10 + left + 1;
int rightIndex = left + (right - left) / 5;
return selectIndex(list, left, rightIndex, mid);
}
private static <T extends Comparable<T>> int partition5(List<T> list, int left, int right) {
List<T> ts = list.subList(left, right);
ts.sort(Comparator.naturalOrder());
return (left + right) >>> 1;
}
}