-
Notifications
You must be signed in to change notification settings - Fork 19.4k
/
FFTBluestein.java
71 lines (62 loc) · 2.47 KB
/
FFTBluestein.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
package com.thealgorithms.maths;
import java.util.ArrayList;
import java.util.List;
/**
* Class for calculating the Fast Fourier Transform (FFT) of a discrete signal
* using the Bluestein's algorithm.
*
* @author Ioannis Karavitsis
* @version 1.0
*/
public final class FFTBluestein {
private FFTBluestein() {
}
/**
* Bluestein's FFT Algorithm.
*
* <p>
* More info:
* https://en.wikipedia.org/wiki/Chirp_Z-transform#Bluestein.27s_algorithm
* http://tka4.org/materials/lib/Articles-Books/Numerical%20Algorithms/Hartley_Trasform/Bluestein%27s%20FFT%20algorithm%20-%20Wikipedia,%20the%20free%20encyclopedia.htm
*
* @param x The discrete signal which is then converted to the FFT or the
* IFFT of signal x.
* @param inverse True if you want to find the inverse FFT.
*/
public static void fftBluestein(List<FFT.Complex> x, boolean inverse) {
int n = x.size();
int bnSize = 2 * n - 1;
int direction = inverse ? -1 : 1;
ArrayList<FFT.Complex> an = new ArrayList<>();
ArrayList<FFT.Complex> bn = new ArrayList<>();
/* Initialization of the b(n) sequence (see Wikipedia's article above for the symbols
* used)*/
for (int i = 0; i < bnSize; i++) {
bn.add(new FFT.Complex());
}
for (int i = 0; i < n; i++) {
double angle = (i - n + 1) * (i - n + 1) * Math.PI / n * direction;
bn.set(i, new FFT.Complex(Math.cos(angle), Math.sin(angle)));
bn.set(bnSize - i - 1, new FFT.Complex(Math.cos(angle), Math.sin(angle)));
}
/* Initialization of the a(n) sequence */
for (int i = 0; i < n; i++) {
double angle = -i * i * Math.PI / n * direction;
an.add(x.get(i).multiply(new FFT.Complex(Math.cos(angle), Math.sin(angle))));
}
ArrayList<FFT.Complex> convolution = ConvolutionFFT.convolutionFFT(an, bn);
/* The final multiplication of the convolution with the b*(k) factor */
for (int i = 0; i < n; i++) {
double angle = -1 * i * i * Math.PI / n * direction;
FFT.Complex bk = new FFT.Complex(Math.cos(angle), Math.sin(angle));
x.set(i, bk.multiply(convolution.get(i + n - 1)));
}
/* Divide by n if we want the inverse FFT */
if (inverse) {
for (int i = 0; i < n; i++) {
FFT.Complex z = x.get(i);
x.set(i, z.divide(n));
}
}
}
}