-
Notifications
You must be signed in to change notification settings - Fork 19.4k
/
KnapsackMemoization.java
53 lines (42 loc) · 2.16 KB
/
KnapsackMemoization.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
package com.thealgorithms.dynamicprogramming;
import java.util.Arrays;
/**
* Recursive Solution for 0-1 knapsack with memoization
* This method is basically an extension to the recursive approach so that we
* can overcome the problem of calculating redundant cases and thus increased
* complexity. We can solve this problem by simply creating a 2-D array that can
* store a particular state (n, w) if we get it the first time.
*/
public class KnapsackMemoization {
int knapSack(int capacity, int[] weights, int[] profits, int numOfItems) {
// Declare the table dynamically
int[][] dpTable = new int[numOfItems + 1][capacity + 1];
// Loop to initially fill the table with -1
for (int[] table : dpTable) {
Arrays.fill(table, -1);
}
return solveKnapsackRecursive(capacity, weights, profits, numOfItems, dpTable);
}
// Returns the value of maximum profit using recursive approach
int solveKnapsackRecursive(int capacity, int[] weights, int[] profits, int numOfItems, int[][] dpTable) {
// Base condition
if (numOfItems == 0 || capacity == 0) {
return 0;
}
if (dpTable[numOfItems][capacity] != -1) {
return dpTable[numOfItems][capacity];
}
if (weights[numOfItems - 1] > capacity) {
// Store the value of function call stack in table
dpTable[numOfItems][capacity] = solveKnapsackRecursive(capacity, weights, profits, numOfItems - 1, dpTable);
} else {
// case 1. include the item, if it is less than the capacity
final int includeCurrentItem = profits[numOfItems - 1] + solveKnapsackRecursive(capacity - weights[numOfItems - 1], weights, profits, numOfItems - 1, dpTable);
// case 2. exclude the item if it is more than the capacity
final int excludeCurrentItem = solveKnapsackRecursive(capacity, weights, profits, numOfItems - 1, dpTable);
// Store the value of function call stack in table and return
dpTable[numOfItems][capacity] = Math.max(includeCurrentItem, excludeCurrentItem);
}
return dpTable[numOfItems][capacity];
}
}