-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path4-pigenboost.py
69 lines (47 loc) · 2.38 KB
/
4-pigenboost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import matplotlib.pyplot as plt
import nnetsauce as ns
from survivalist.datasets import load_whas500
from survivalist.ensemble import PIComponentwiseGenGradientBoostingSurvivalAnalysis
from sklearn.linear_model import RidgeCV
from sklearn.tree import ExtraTreeRegressor
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.model_selection import train_test_split
X, y = load_whas500()
X = X.astype(float)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
estimator = PIComponentwiseGenGradientBoostingSurvivalAnalysis(regr = RidgeCV(),
loss="coxph")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X.iloc[:1])
print(surv_funcs)
print("surv_funcs.mean", surv_funcs.mean)
print("surv_funcs.lower", surv_funcs.lower)
print("surv_funcs.upper", surv_funcs.upper)
print("estimator.predict(X_test)", estimator.predict(X_test))
estimator = PIComponentwiseGenGradientBoostingSurvivalAnalysis(regr = RidgeCV(),
loss="coxph",
type_pi="kde")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X.iloc[:1])
print(surv_funcs)
print("surv_funcs.mean", surv_funcs.mean)
print("surv_funcs.lower", surv_funcs.lower)
print("surv_funcs.upper", surv_funcs.upper)
estimator = PIComponentwiseGenGradientBoostingSurvivalAnalysis(regr = RidgeCV(),
loss="coxph",
type_pi="bootstrap")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X.iloc[:1])
print(surv_funcs)
print("surv_funcs.mean", surv_funcs.mean)
print("surv_funcs.lower", surv_funcs.lower)
print("surv_funcs.upper", surv_funcs.upper)
estimator = PIComponentwiseGenGradientBoostingSurvivalAnalysis(regr = RidgeCV(),
loss="coxph",
type_pi="ecdf")
estimator.fit(X_train, y_train)
surv_funcs = estimator.predict_survival_function(X.iloc[:1])
print(surv_funcs)
print("surv_funcs.mean", surv_funcs.mean)
print("surv_funcs.lower", surv_funcs.lower)
print("surv_funcs.upper", surv_funcs.upper)