@@ -91,7 +91,7 @@ class LazyDeepRegressor(Custom, RegressorMixin):
91
91
estimators: list, optional (default='all')
92
92
list of Estimators names or just 'all' (default='all')
93
93
94
- preprocess: bool
94
+ preprocess: bool
95
95
preprocessing is done when set to True
96
96
97
97
n_jobs : int, when possible, run in parallel
@@ -264,7 +264,7 @@ def fit(self, X_train, X_test, y_train, y_test):
264
264
]
265
265
266
266
if self .preprocess is True :
267
-
267
+
268
268
for name , model in tqdm (self .regressors ): # do parallel exec
269
269
start = time .time ()
270
270
try :
@@ -305,7 +305,7 @@ def fit(self, X_train, X_test, y_train, y_test):
305
305
row_sample = self .row_sample ,
306
306
seed = self .seed ,
307
307
backend = self .backend ,
308
- )
308
+ )
309
309
310
310
for _ in range (self .n_layers ):
311
311
layer_regr = deepcopy (
@@ -331,9 +331,13 @@ def fit(self, X_train, X_test, y_train, y_test):
331
331
332
332
layer_regr .fit (X_train , y_train )
333
333
334
- pipe = Pipeline (steps = [("preprocessor" , preprocessor ),
335
- ("regressor" , layer_regr )])
336
-
334
+ pipe = Pipeline (
335
+ steps = [
336
+ ("preprocessor" , preprocessor ),
337
+ ("regressor" , layer_regr ),
338
+ ]
339
+ )
340
+
337
341
pipe .fit (X_train , y_train )
338
342
339
343
self .models [name ] = pipe
@@ -376,7 +380,7 @@ def fit(self, X_train, X_test, y_train, y_test):
376
380
print (name + " model failed to execute" )
377
381
print (exception )
378
382
379
- else : # no preprocessing
383
+ else : # no preprocessing
380
384
381
385
for name , model in tqdm (self .regressors ): # do parallel exec
382
386
start = time .time ()
0 commit comments