diff --git a/.github/workflows/python-publish.yml b/.github/workflows/python-publish.yml index a5b8c8b..1c32c20 100644 --- a/.github/workflows/python-publish.yml +++ b/.github/workflows/python-publish.yml @@ -30,8 +30,8 @@ jobs: - name: Run examples run: pip install .&&find examples -maxdepth 2 -name "*.py" -exec python3 {} \; - #- name: Publish to PyPI - # uses: pypa/gh-action-pypi-publish@release/v1 - # with: - # password: ${{ secrets.PYPI_GLOBAL_MLSAUCE }} - # repository-url: https://upload.pypi.org/legacy/ + - name: Publish to PyPI + uses: pypa/gh-action-pypi-publish@release/v1 + with: + password: ${{ secrets.PYPI_GLOBAL_MLSAUCE }} + repository-url: https://upload.pypi.org/legacy/ diff --git a/CHANGES.md b/CHANGES.md index cdc9acb..fa01fbf 100644 --- a/CHANGES.md +++ b/CHANGES.md @@ -1,4 +1,4 @@ -# version 0.18.0 +# version 0.18.2 - Gaussian weights in `LSBoostRegressor` and `LSBoostClassifier` randomized hidden layer diff --git a/examples/lsboost_classifier.py b/examples/lsboost_classifier.py index e871b8f..048385b 100644 --- a/examples/lsboost_classifier.py +++ b/examples/lsboost_classifier.py @@ -270,3 +270,16 @@ print(time()-start) +obj = ms.LSBoostClassifier(solver="lasso", + n_clusters=3, degree=2, + clustering_method="gmm", + weights_distr="gaussian") +print(obj.get_params()) +start = time() +obj.fit(X_train, y_train) +print(time()-start) +start = time() +print(obj.score(X_test, y_test)) +print(time()-start) + + diff --git a/mlsauce-docs/mlsauce.html b/mlsauce-docs/mlsauce.html index 160baa7..7b23a9d 100644 --- a/mlsauce-docs/mlsauce.html +++ b/mlsauce-docs/mlsauce.html @@ -137,6 +137,8 @@

API Documentation

  • +
  • +
  • @@ -269,6 +271,8 @@

    API Documentation

  • +
  • +
  • @@ -1339,235 +1343,241 @@

    80 degree: int 81 degree of features interactions to include in the model 82 - 83 """ - 84 - 85 def __init__( - 86 self, - 87 n_estimators=100, - 88 learning_rate=0.1, - 89 n_hidden_features=5, - 90 reg_lambda=0.1, - 91 alpha=0.5, - 92 row_sample=1, - 93 col_sample=1, - 94 dropout=0, - 95 tolerance=1e-4, - 96 direct_link=1, - 97 verbose=1, - 98 seed=123, - 99 backend="cpu", -100 solver="ridge", -101 activation="relu", -102 n_clusters=0, -103 clustering_method="kmeans", -104 cluster_scaling="standard", -105 degree=0, -106 ): -107 if n_clusters > 0: -108 assert clustering_method in ( -109 "kmeans", -110 "gmm", -111 ), "`clustering_method` must be in ('kmeans', 'gmm')" -112 assert cluster_scaling in ( -113 "standard", -114 "robust", -115 "minmax", -116 ), "`cluster_scaling` must be in ('standard', 'robust', 'minmax')" -117 -118 assert backend in ( -119 "cpu", -120 "gpu", -121 "tpu", -122 ), "`backend` must be in ('cpu', 'gpu', 'tpu')" -123 -124 assert solver in ( -125 "ridge", -126 "lasso", -127 "enet", -128 ), "`solver` must be in ('ridge', 'lasso', 'enet')" -129 -130 sys_platform = platform.system() -131 -132 if (sys_platform == "Windows") and (backend in ("gpu", "tpu")): -133 warnings.warn( -134 "No GPU/TPU computing on Windows yet, backend set to 'cpu'" -135 ) -136 backend = "cpu" -137 -138 self.n_estimators = n_estimators -139 self.learning_rate = learning_rate -140 self.n_hidden_features = n_hidden_features -141 self.reg_lambda = reg_lambda -142 assert alpha >= 0 and alpha <= 1, "`alpha` must be in [0, 1]" -143 self.alpha = alpha -144 self.row_sample = row_sample -145 self.col_sample = col_sample -146 self.dropout = dropout -147 self.tolerance = tolerance -148 self.direct_link = direct_link -149 self.verbose = verbose -150 self.seed = seed -151 self.backend = backend -152 self.obj = None -153 self.solver = solver -154 self.activation = activation -155 self.n_clusters = n_clusters -156 self.clustering_method = clustering_method -157 self.cluster_scaling = cluster_scaling -158 self.scaler_, self.label_encoder_, self.clusterer_ = None, None, None -159 self.degree = degree -160 self.poly_ = None -161 -162 def fit(self, X, y, **kwargs): -163 """Fit Booster (classifier) to training data (X, y) -164 -165 Args: -166 -167 X: {array-like}, shape = [n_samples, n_features] -168 Training vectors, where n_samples is the number -169 of samples and n_features is the number of features. + 83 weights_distr: str + 84 distribution of weights for constructing the model's hidden layer; + 85 currently 'uniform', 'gaussian' + 86 + 87 """ + 88 + 89 def __init__( + 90 self, + 91 n_estimators=100, + 92 learning_rate=0.1, + 93 n_hidden_features=5, + 94 reg_lambda=0.1, + 95 alpha=0.5, + 96 row_sample=1, + 97 col_sample=1, + 98 dropout=0, + 99 tolerance=1e-4, +100 direct_link=1, +101 verbose=1, +102 seed=123, +103 backend="cpu", +104 solver="ridge", +105 activation="relu", +106 n_clusters=0, +107 clustering_method="kmeans", +108 cluster_scaling="standard", +109 degree=0, +110 weights_distr="uniform", +111 ): +112 if n_clusters > 0: +113 assert clustering_method in ( +114 "kmeans", +115 "gmm", +116 ), "`clustering_method` must be in ('kmeans', 'gmm')" +117 assert cluster_scaling in ( +118 "standard", +119 "robust", +120 "minmax", +121 ), "`cluster_scaling` must be in ('standard', 'robust', 'minmax')" +122 +123 assert backend in ( +124 "cpu", +125 "gpu", +126 "tpu", +127 ), "`backend` must be in ('cpu', 'gpu', 'tpu')" +128 +129 assert solver in ( +130 "ridge", +131 "lasso", +132 "enet", +133 ), "`solver` must be in ('ridge', 'lasso', 'enet')" +134 +135 sys_platform = platform.system() +136 +137 if (sys_platform == "Windows") and (backend in ("gpu", "tpu")): +138 warnings.warn( +139 "No GPU/TPU computing on Windows yet, backend set to 'cpu'" +140 ) +141 backend = "cpu" +142 +143 self.n_estimators = n_estimators +144 self.learning_rate = learning_rate +145 self.n_hidden_features = n_hidden_features +146 self.reg_lambda = reg_lambda +147 assert alpha >= 0 and alpha <= 1, "`alpha` must be in [0, 1]" +148 self.alpha = alpha +149 self.row_sample = row_sample +150 self.col_sample = col_sample +151 self.dropout = dropout +152 self.tolerance = tolerance +153 self.direct_link = direct_link +154 self.verbose = verbose +155 self.seed = seed +156 self.backend = backend +157 self.obj = None +158 self.solver = solver +159 self.activation = activation +160 self.n_clusters = n_clusters +161 self.clustering_method = clustering_method +162 self.cluster_scaling = cluster_scaling +163 self.scaler_, self.label_encoder_, self.clusterer_ = None, None, None +164 self.degree = degree +165 self.poly_ = None +166 self.weights_distr = weights_distr +167 +168 def fit(self, X, y, **kwargs): +169 """Fit Booster (classifier) to training data (X, y) 170 -171 y: array-like, shape = [n_samples] -172 Target values. -173 -174 **kwargs: additional parameters to be passed to self.cook_training_set. -175 -176 Returns: -177 -178 self: object. -179 """ -180 -181 if isinstance(X, pd.DataFrame): -182 X = X.values +171 Args: +172 +173 X: {array-like}, shape = [n_samples, n_features] +174 Training vectors, where n_samples is the number +175 of samples and n_features is the number of features. +176 +177 y: array-like, shape = [n_samples] +178 Target values. +179 +180 **kwargs: additional parameters to be passed to self.cook_training_set. +181 +182 Returns: 183 -184 if self.degree > 1: -185 self.poly_ = PolynomialFeatures( -186 degree=self.degree, interaction_only=True, include_bias=False -187 ) -188 X = self.poly_.fit_transform(X) +184 self: object. +185 """ +186 +187 if isinstance(X, pd.DataFrame): +188 X = X.values 189 -190 if self.n_clusters > 0: -191 clustered_X, self.scaler_, self.label_encoder_, self.clusterer_ = ( -192 cluster( -193 X, -194 n_clusters=self.n_clusters, -195 method=self.clustering_method, -196 type_scaling=self.cluster_scaling, -197 training=True, -198 seed=self.seed, -199 ) -200 ) -201 X = np.column_stack((X, clustered_X)) -202 -203 try: -204 self.obj = boosterc.fit_booster_classifier( -205 np.asarray(X, order="C"), -206 np.asarray(y, order="C"), -207 n_estimators=self.n_estimators, -208 learning_rate=self.learning_rate, -209 n_hidden_features=self.n_hidden_features, -210 reg_lambda=self.reg_lambda, -211 alpha=self.alpha, -212 row_sample=self.row_sample, -213 col_sample=self.col_sample, -214 dropout=self.dropout, -215 tolerance=self.tolerance, -216 direct_link=self.direct_link, -217 verbose=self.verbose, -218 seed=self.seed, -219 backend=self.backend, -220 solver=self.solver, -221 activation=self.activation, -222 ) -223 except ValueError: -224 self.obj = _boosterc.fit_booster_classifier( -225 np.asarray(X, order="C"), -226 np.asarray(y, order="C"), -227 n_estimators=self.n_estimators, -228 learning_rate=self.learning_rate, -229 n_hidden_features=self.n_hidden_features, -230 reg_lambda=self.reg_lambda, -231 alpha=self.alpha, -232 row_sample=self.row_sample, -233 col_sample=self.col_sample, -234 dropout=self.dropout, -235 tolerance=self.tolerance, -236 direct_link=self.direct_link, -237 verbose=self.verbose, -238 seed=self.seed, -239 backend=self.backend, -240 solver=self.solver, -241 activation=self.activation, -242 ) -243 -244 self.n_classes_ = len(np.unique(y)) # for compatibility with sklearn -245 self.n_estimators = self.obj["n_estimators"] -246 return self -247 -248 def predict(self, X, **kwargs): -249 """Predict test data X. -250 -251 Args: -252 -253 X: {array-like}, shape = [n_samples, n_features] -254 Training vectors, where n_samples is the number -255 of samples and n_features is the number of features. +190 if self.degree > 1: +191 self.poly_ = PolynomialFeatures( +192 degree=self.degree, interaction_only=True, include_bias=False +193 ) +194 X = self.poly_.fit_transform(X) +195 +196 if self.n_clusters > 0: +197 clustered_X, self.scaler_, self.label_encoder_, self.clusterer_ = ( +198 cluster( +199 X, +200 n_clusters=self.n_clusters, +201 method=self.clustering_method, +202 type_scaling=self.cluster_scaling, +203 training=True, +204 seed=self.seed, +205 ) +206 ) +207 X = np.column_stack((X, clustered_X)) +208 +209 try: +210 self.obj = boosterc.fit_booster_classifier( +211 np.asarray(X, order="C"), +212 np.asarray(y, order="C"), +213 n_estimators=self.n_estimators, +214 learning_rate=self.learning_rate, +215 n_hidden_features=self.n_hidden_features, +216 reg_lambda=self.reg_lambda, +217 alpha=self.alpha, +218 row_sample=self.row_sample, +219 col_sample=self.col_sample, +220 dropout=self.dropout, +221 tolerance=self.tolerance, +222 direct_link=self.direct_link, +223 verbose=self.verbose, +224 seed=self.seed, +225 backend=self.backend, +226 solver=self.solver, +227 activation=self.activation, +228 ) +229 except ValueError: +230 self.obj = _boosterc.fit_booster_classifier( +231 np.asarray(X, order="C"), +232 np.asarray(y, order="C"), +233 n_estimators=self.n_estimators, +234 learning_rate=self.learning_rate, +235 n_hidden_features=self.n_hidden_features, +236 reg_lambda=self.reg_lambda, +237 alpha=self.alpha, +238 row_sample=self.row_sample, +239 col_sample=self.col_sample, +240 dropout=self.dropout, +241 tolerance=self.tolerance, +242 direct_link=self.direct_link, +243 verbose=self.verbose, +244 seed=self.seed, +245 backend=self.backend, +246 solver=self.solver, +247 activation=self.activation, +248 ) +249 +250 self.n_classes_ = len(np.unique(y)) # for compatibility with sklearn +251 self.n_estimators = self.obj["n_estimators"] +252 return self +253 +254 def predict(self, X, **kwargs): +255 """Predict test data X. 256 -257 **kwargs: additional parameters to be passed to `predict_proba` +257 Args: 258 -259 -260 Returns: -261 -262 model predictions: {array-like} -263 """ +259 X: {array-like}, shape = [n_samples, n_features] +260 Training vectors, where n_samples is the number +261 of samples and n_features is the number of features. +262 +263 **kwargs: additional parameters to be passed to `predict_proba` 264 -265 return np.argmax(self.predict_proba(X, **kwargs), axis=1) -266 -267 def predict_proba(self, X, **kwargs): -268 """Predict probabilities for test data X. -269 -270 Args: -271 -272 X: {array-like}, shape = [n_samples, n_features] -273 Training vectors, where n_samples is the number -274 of samples and n_features is the number of features. +265 +266 Returns: +267 +268 model predictions: {array-like} +269 """ +270 +271 return np.argmax(self.predict_proba(X, **kwargs), axis=1) +272 +273 def predict_proba(self, X, **kwargs): +274 """Predict probabilities for test data X. 275 -276 **kwargs: additional parameters to be passed to -277 self.cook_test_set -278 -279 Returns: -280 -281 probability estimates for test data: {array-like} -282 """ -283 -284 if isinstance(X, pd.DataFrame): -285 X = X.values +276 Args: +277 +278 X: {array-like}, shape = [n_samples, n_features] +279 Training vectors, where n_samples is the number +280 of samples and n_features is the number of features. +281 +282 **kwargs: additional parameters to be passed to +283 self.cook_test_set +284 +285 Returns: 286 -287 if self.degree > 0: -288 X = self.poly_.transform(X) +287 probability estimates for test data: {array-like} +288 """ 289 -290 if self.n_clusters > 0: -291 X = np.column_stack( -292 ( -293 X, -294 cluster( -295 X, -296 training=False, -297 scaler=self.scaler_, -298 label_encoder=self.label_encoder_, -299 clusterer=self.clusterer_, -300 seed=self.seed, -301 ), -302 ) -303 ) -304 try: -305 return boosterc.predict_proba_booster_classifier( -306 self.obj, np.asarray(X, order="C") -307 ) -308 except ValueError: -309 return _boosterc.predict_proba_booster_classifier( -310 self.obj, np.asarray(X, order="C") -311 ) +290 if isinstance(X, pd.DataFrame): +291 X = X.values +292 +293 if self.degree > 0: +294 X = self.poly_.transform(X) +295 +296 if self.n_clusters > 0: +297 X = np.column_stack( +298 ( +299 X, +300 cluster( +301 X, +302 training=False, +303 scaler=self.scaler_, +304 label_encoder=self.label_encoder_, +305 clusterer=self.clusterer_, +306 seed=self.seed, +307 ), +308 ) +309 ) +310 try: +311 return boosterc.predict_proba_booster_classifier( +312 self.obj, np.asarray(X, order="C") +313 ) +314 except ValueError: +315 return _boosterc.predict_proba_booster_classifier( +316 self.obj, np.asarray(X, order="C") +317 ) @@ -1635,6 +1645,10 @@

    degree: int degree of features interactions to include in the model + +weights_distr: str + distribution of weights for constructing the model's hidden layer; + currently 'uniform', 'gaussian' @@ -1650,91 +1664,91 @@

    -
    162    def fit(self, X, y, **kwargs):
    -163        """Fit Booster (classifier) to training data (X, y)
    -164
    -165        Args:
    -166
    -167            X: {array-like}, shape = [n_samples, n_features]
    -168                Training vectors, where n_samples is the number
    -169                of samples and n_features is the number of features.
    +            
    168    def fit(self, X, y, **kwargs):
    +169        """Fit Booster (classifier) to training data (X, y)
     170
    -171            y: array-like, shape = [n_samples]
    -172                Target values.
    -173
    -174            **kwargs: additional parameters to be passed to self.cook_training_set.
    -175
    -176        Returns:
    -177
    -178            self: object.
    -179        """
    -180
    -181        if isinstance(X, pd.DataFrame):
    -182            X = X.values
    +171        Args:
    +172
    +173            X: {array-like}, shape = [n_samples, n_features]
    +174                Training vectors, where n_samples is the number
    +175                of samples and n_features is the number of features.
    +176
    +177            y: array-like, shape = [n_samples]
    +178                Target values.
    +179
    +180            **kwargs: additional parameters to be passed to self.cook_training_set.
    +181
    +182        Returns:
     183
    -184        if self.degree > 1:
    -185            self.poly_ = PolynomialFeatures(
    -186                degree=self.degree, interaction_only=True, include_bias=False
    -187            )
    -188            X = self.poly_.fit_transform(X)
    +184            self: object.
    +185        """
    +186
    +187        if isinstance(X, pd.DataFrame):
    +188            X = X.values
     189
    -190        if self.n_clusters > 0:
    -191            clustered_X, self.scaler_, self.label_encoder_, self.clusterer_ = (
    -192                cluster(
    -193                    X,
    -194                    n_clusters=self.n_clusters,
    -195                    method=self.clustering_method,
    -196                    type_scaling=self.cluster_scaling,
    -197                    training=True,
    -198                    seed=self.seed,
    -199                )
    -200            )
    -201            X = np.column_stack((X, clustered_X))
    -202
    -203        try:
    -204            self.obj = boosterc.fit_booster_classifier(
    -205                np.asarray(X, order="C"),
    -206                np.asarray(y, order="C"),
    -207                n_estimators=self.n_estimators,
    -208                learning_rate=self.learning_rate,
    -209                n_hidden_features=self.n_hidden_features,
    -210                reg_lambda=self.reg_lambda,
    -211                alpha=self.alpha,
    -212                row_sample=self.row_sample,
    -213                col_sample=self.col_sample,
    -214                dropout=self.dropout,
    -215                tolerance=self.tolerance,
    -216                direct_link=self.direct_link,
    -217                verbose=self.verbose,
    -218                seed=self.seed,
    -219                backend=self.backend,
    -220                solver=self.solver,
    -221                activation=self.activation,
    -222            )
    -223        except ValueError:
    -224            self.obj = _boosterc.fit_booster_classifier(
    -225                np.asarray(X, order="C"),
    -226                np.asarray(y, order="C"),
    -227                n_estimators=self.n_estimators,
    -228                learning_rate=self.learning_rate,
    -229                n_hidden_features=self.n_hidden_features,
    -230                reg_lambda=self.reg_lambda,
    -231                alpha=self.alpha,
    -232                row_sample=self.row_sample,
    -233                col_sample=self.col_sample,
    -234                dropout=self.dropout,
    -235                tolerance=self.tolerance,
    -236                direct_link=self.direct_link,
    -237                verbose=self.verbose,
    -238                seed=self.seed,
    -239                backend=self.backend,
    -240                solver=self.solver,
    -241                activation=self.activation,
    -242            )
    -243
    -244        self.n_classes_ = len(np.unique(y))  # for compatibility with sklearn
    -245        self.n_estimators = self.obj["n_estimators"]
    -246        return self
    +190        if self.degree > 1:
    +191            self.poly_ = PolynomialFeatures(
    +192                degree=self.degree, interaction_only=True, include_bias=False
    +193            )
    +194            X = self.poly_.fit_transform(X)
    +195
    +196        if self.n_clusters > 0:
    +197            clustered_X, self.scaler_, self.label_encoder_, self.clusterer_ = (
    +198                cluster(
    +199                    X,
    +200                    n_clusters=self.n_clusters,
    +201                    method=self.clustering_method,
    +202                    type_scaling=self.cluster_scaling,
    +203                    training=True,
    +204                    seed=self.seed,
    +205                )
    +206            )
    +207            X = np.column_stack((X, clustered_X))
    +208
    +209        try:
    +210            self.obj = boosterc.fit_booster_classifier(
    +211                np.asarray(X, order="C"),
    +212                np.asarray(y, order="C"),
    +213                n_estimators=self.n_estimators,
    +214                learning_rate=self.learning_rate,
    +215                n_hidden_features=self.n_hidden_features,
    +216                reg_lambda=self.reg_lambda,
    +217                alpha=self.alpha,
    +218                row_sample=self.row_sample,
    +219                col_sample=self.col_sample,
    +220                dropout=self.dropout,
    +221                tolerance=self.tolerance,
    +222                direct_link=self.direct_link,
    +223                verbose=self.verbose,
    +224                seed=self.seed,
    +225                backend=self.backend,
    +226                solver=self.solver,
    +227                activation=self.activation,
    +228            )
    +229        except ValueError:
    +230            self.obj = _boosterc.fit_booster_classifier(
    +231                np.asarray(X, order="C"),
    +232                np.asarray(y, order="C"),
    +233                n_estimators=self.n_estimators,
    +234                learning_rate=self.learning_rate,
    +235                n_hidden_features=self.n_hidden_features,
    +236                reg_lambda=self.reg_lambda,
    +237                alpha=self.alpha,
    +238                row_sample=self.row_sample,
    +239                col_sample=self.col_sample,
    +240                dropout=self.dropout,
    +241                tolerance=self.tolerance,
    +242                direct_link=self.direct_link,
    +243                verbose=self.verbose,
    +244                seed=self.seed,
    +245                backend=self.backend,
    +246                solver=self.solver,
    +247                activation=self.activation,
    +248            )
    +249
    +250        self.n_classes_ = len(np.unique(y))  # for compatibility with sklearn
    +251        self.n_estimators = self.obj["n_estimators"]
    +252        return self
     
    @@ -1771,24 +1785,24 @@

    -
    248    def predict(self, X, **kwargs):
    -249        """Predict test data X.
    -250
    -251        Args:
    -252
    -253            X: {array-like}, shape = [n_samples, n_features]
    -254                Training vectors, where n_samples is the number
    -255                of samples and n_features is the number of features.
    +            
    254    def predict(self, X, **kwargs):
    +255        """Predict test data X.
     256
    -257            **kwargs: additional parameters to be passed to `predict_proba`
    +257        Args:
     258
    -259
    -260        Returns:
    -261
    -262            model predictions: {array-like}
    -263        """
    +259            X: {array-like}, shape = [n_samples, n_features]
    +260                Training vectors, where n_samples is the number
    +261                of samples and n_features is the number of features.
    +262
    +263            **kwargs: additional parameters to be passed to `predict_proba`
     264
    -265        return np.argmax(self.predict_proba(X, **kwargs), axis=1)
    +265
    +266        Returns:
    +267
    +268            model predictions: {array-like}
    +269        """
    +270
    +271        return np.argmax(self.predict_proba(X, **kwargs), axis=1)
     
    @@ -1822,51 +1836,51 @@

    -
    267    def predict_proba(self, X, **kwargs):
    -268        """Predict probabilities for test data X.
    -269
    -270        Args:
    -271
    -272            X: {array-like}, shape = [n_samples, n_features]
    -273                Training vectors, where n_samples is the number
    -274                of samples and n_features is the number of features.
    +            
    273    def predict_proba(self, X, **kwargs):
    +274        """Predict probabilities for test data X.
     275
    -276            **kwargs: additional parameters to be passed to
    -277                self.cook_test_set
    -278
    -279        Returns:
    -280
    -281            probability estimates for test data: {array-like}
    -282        """
    -283
    -284        if isinstance(X, pd.DataFrame):
    -285            X = X.values
    +276        Args:
    +277
    +278            X: {array-like}, shape = [n_samples, n_features]
    +279                Training vectors, where n_samples is the number
    +280                of samples and n_features is the number of features.
    +281
    +282            **kwargs: additional parameters to be passed to
    +283                self.cook_test_set
    +284
    +285        Returns:
     286
    -287        if self.degree > 0:
    -288            X = self.poly_.transform(X)
    +287            probability estimates for test data: {array-like}
    +288        """
     289
    -290        if self.n_clusters > 0:
    -291            X = np.column_stack(
    -292                (
    -293                    X,
    -294                    cluster(
    -295                        X,
    -296                        training=False,
    -297                        scaler=self.scaler_,
    -298                        label_encoder=self.label_encoder_,
    -299                        clusterer=self.clusterer_,
    -300                        seed=self.seed,
    -301                    ),
    -302                )
    -303            )
    -304        try:
    -305            return boosterc.predict_proba_booster_classifier(
    -306                self.obj, np.asarray(X, order="C")
    -307            )
    -308        except ValueError:
    -309            return _boosterc.predict_proba_booster_classifier(
    -310                self.obj, np.asarray(X, order="C")
    -311            )
    +290        if isinstance(X, pd.DataFrame):
    +291            X = X.values
    +292
    +293        if self.degree > 0:
    +294            X = self.poly_.transform(X)
    +295
    +296        if self.n_clusters > 0:
    +297            X = np.column_stack(
    +298                (
    +299                    X,
    +300                    cluster(
    +301                        X,
    +302                        training=False,
    +303                        scaler=self.scaler_,
    +304                        label_encoder=self.label_encoder_,
    +305                        clusterer=self.clusterer_,
    +306                        seed=self.seed,
    +307                    ),
    +308                )
    +309            )
    +310        try:
    +311            return boosterc.predict_proba_booster_classifier(
    +312                self.obj, np.asarray(X, order="C")
    +313            )
    +314        except ValueError:
    +315            return _boosterc.predict_proba_booster_classifier(
    +316                self.obj, np.asarray(X, order="C")
    +317            )
     
    @@ -2789,327 +2803,333 @@

    -
     14class LSBoostRegressor(BaseEstimator, RegressorMixin):
    - 15    """LSBoost regressor.
    - 16
    - 17    Attributes:
    - 18
    - 19        n_estimators: int
    - 20            number of boosting iterations.
    - 21
    - 22        learning_rate: float
    - 23            controls the learning speed at training time.
    - 24
    - 25        n_hidden_features: int
    - 26            number of nodes in successive hidden layers.
    - 27
    - 28        reg_lambda: float
    - 29            L2 regularization parameter for successive errors in the optimizer
    - 30            (at training time).
    +            
     18class LSBoostRegressor(BaseEstimator, RegressorMixin):
    + 19    """LSBoost regressor.
    + 20
    + 21    Attributes:
    + 22
    + 23        n_estimators: int
    + 24            number of boosting iterations.
    + 25
    + 26        learning_rate: float
    + 27            controls the learning speed at training time.
    + 28
    + 29        n_hidden_features: int
    + 30            number of nodes in successive hidden layers.
      31
    - 32        alpha: float
    - 33            compromise between L1 and L2 regularization (must be in [0, 1]),
    - 34            for `solver` == 'enet'
    + 32        reg_lambda: float
    + 33            L2 regularization parameter for successive errors in the optimizer
    + 34            (at training time).
      35
    - 36        row_sample: float
    - 37            percentage of rows chosen from the training set.
    - 38
    - 39        col_sample: float
    - 40            percentage of columns chosen from the training set.
    - 41
    - 42        dropout: float
    - 43            percentage of nodes dropped from the training set.
    - 44
    - 45        tolerance: float
    - 46            controls early stopping in gradient descent (at training time).
    - 47
    - 48        direct_link: bool
    - 49            indicates whether the original features are included (True) in model's
    - 50            fitting or not (False).
    + 36        alpha: float
    + 37            compromise between L1 and L2 regularization (must be in [0, 1]),
    + 38            for `solver` == 'enet'
    + 39
    + 40        row_sample: float
    + 41            percentage of rows chosen from the training set.
    + 42
    + 43        col_sample: float
    + 44            percentage of columns chosen from the training set.
    + 45
    + 46        dropout: float
    + 47            percentage of nodes dropped from the training set.
    + 48
    + 49        tolerance: float
    + 50            controls early stopping in gradient descent (at training time).
      51
    - 52        verbose: int
    - 53            progress bar (yes = 1) or not (no = 0) (currently).
    - 54
    - 55        seed: int
    - 56            reproducibility seed for nodes_sim=='uniform', clustering and dropout.
    - 57
    - 58        backend: str
    - 59            type of backend; must be in ('cpu', 'gpu', 'tpu')
    - 60
    - 61        solver: str
    - 62            type of 'weak' learner; currently in ('ridge', 'lasso')
    - 63
    - 64        activation: str
    - 65            activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'
    - 66
    - 67        type_pi: str.
    - 68            type of prediction interval; currently "kde" (default) or "bootstrap".
    - 69            Used only in `self.predict`, for `self.replications` > 0 and `self.kernel`
    - 70            in ('gaussian', 'tophat'). Default is `None`.
    - 71
    - 72        replications: int.
    - 73            number of replications (if needed) for predictive simulation.
    - 74            Used only in `self.predict`, for `self.kernel` in ('gaussian',
    - 75            'tophat') and `self.type_pi = 'kde'`. Default is `None`.
    - 76
    - 77        n_clusters: int
    - 78            number of clusters for clustering the features
    - 79
    - 80        clustering_method: str
    - 81            clustering method: currently 'kmeans', 'gmm'
    - 82
    - 83        cluster_scaling: str
    - 84            scaling method for clustering: currently 'standard', 'robust', 'minmax'
    - 85
    - 86        degree: int
    - 87            degree of features interactions to include in the model
    - 88
    - 89    """
    - 90
    - 91    def __init__(
    - 92        self,
    - 93        n_estimators=100,
    - 94        learning_rate=0.1,
    - 95        n_hidden_features=5,
    - 96        reg_lambda=0.1,
    - 97        alpha=0.5,
    - 98        row_sample=1,
    - 99        col_sample=1,
    -100        dropout=0,
    -101        tolerance=1e-4,
    -102        direct_link=1,
    -103        verbose=1,
    -104        seed=123,
    -105        backend="cpu",
    -106        solver="ridge",
    -107        activation="relu",
    -108        type_pi=None,
    -109        replications=None,
    -110        kernel=None,
    -111        n_clusters=0,
    -112        clustering_method="kmeans",
    -113        cluster_scaling="standard",
    -114        degree=0,
    -115    ):
    -116        if n_clusters > 0:
    -117            assert clustering_method in (
    -118                "kmeans",
    -119                "gmm",
    -120            ), "`clustering_method` must be in ('kmeans', 'gmm')"
    -121            assert cluster_scaling in (
    -122                "standard",
    -123                "robust",
    -124                "minmax",
    -125            ), "`cluster_scaling` must be in ('standard', 'robust', 'minmax')"
    -126
    -127        assert backend in (
    -128            "cpu",
    -129            "gpu",
    -130            "tpu",
    -131        ), "`backend` must be in ('cpu', 'gpu', 'tpu')"
    -132
    -133        assert solver in (
    -134            "ridge",
    -135            "lasso",
    -136            "enet",
    -137        ), "`solver` must be in ('ridge', 'lasso', 'enet')"
    -138
    -139        sys_platform = platform.system()
    -140
    -141        if (sys_platform == "Windows") and (backend in ("gpu", "tpu")):
    -142            warnings.warn(
    -143                "No GPU/TPU computing on Windows yet, backend set to 'cpu'"
    -144            )
    -145            backend = "cpu"
    -146
    -147        self.n_estimators = n_estimators
    -148        self.learning_rate = learning_rate
    -149        self.n_hidden_features = n_hidden_features
    -150        self.reg_lambda = reg_lambda
    -151        assert alpha >= 0 and alpha <= 1, "`alpha` must be in [0, 1]"
    -152        self.alpha = alpha
    -153        self.row_sample = row_sample
    -154        self.col_sample = col_sample
    -155        self.dropout = dropout
    -156        self.tolerance = tolerance
    -157        self.direct_link = direct_link
    -158        self.verbose = verbose
    -159        self.seed = seed
    -160        self.backend = backend
    -161        self.obj = None
    -162        self.solver = solver
    -163        self.activation = activation
    -164        self.type_pi = type_pi
    -165        self.replications = replications
    -166        self.kernel = kernel
    -167        self.n_clusters = n_clusters
    -168        self.clustering_method = clustering_method
    -169        self.cluster_scaling = cluster_scaling
    -170        self.scaler_, self.label_encoder_, self.clusterer_ = None, None, None
    -171        self.degree = degree
    -172        self.poly_ = None
    -173
    -174    def fit(self, X, y, **kwargs):
    -175        """Fit Booster (regressor) to training data (X, y)
    -176
    -177        Args:
    -178
    -179            X: {array-like}, shape = [n_samples, n_features]
    -180                Training vectors, where n_samples is the number
    -181                of samples and n_features is the number of features.
    -182
    -183            y: array-like, shape = [n_samples]
    -184               Target values.
    -185
    -186            **kwargs: additional parameters to be passed to self.cook_training_set.
    -187
    -188        Returns:
    -189
    -190            self: object.
    -191        """
    + 52        direct_link: bool
    + 53            indicates whether the original features are included (True) in model's
    + 54            fitting or not (False).
    + 55
    + 56        verbose: int
    + 57            progress bar (yes = 1) or not (no = 0) (currently).
    + 58
    + 59        seed: int
    + 60            reproducibility seed for nodes_sim=='uniform', clustering and dropout.
    + 61
    + 62        backend: str
    + 63            type of backend; must be in ('cpu', 'gpu', 'tpu')
    + 64
    + 65        solver: str
    + 66            type of 'weak' learner; currently in ('ridge', 'lasso')
    + 67
    + 68        activation: str
    + 69            activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'
    + 70
    + 71        type_pi: str.
    + 72            type of prediction interval; currently "kde" (default) or "bootstrap".
    + 73            Used only in `self.predict`, for `self.replications` > 0 and `self.kernel`
    + 74            in ('gaussian', 'tophat'). Default is `None`.
    + 75
    + 76        replications: int.
    + 77            number of replications (if needed) for predictive simulation.
    + 78            Used only in `self.predict`, for `self.kernel` in ('gaussian',
    + 79            'tophat') and `self.type_pi = 'kde'`. Default is `None`.
    + 80
    + 81        n_clusters: int
    + 82            number of clusters for clustering the features
    + 83
    + 84        clustering_method: str
    + 85            clustering method: currently 'kmeans', 'gmm'
    + 86
    + 87        cluster_scaling: str
    + 88            scaling method for clustering: currently 'standard', 'robust', 'minmax'
    + 89
    + 90        degree: int
    + 91            degree of features interactions to include in the model
    + 92
    + 93        weights_distr: str
    + 94            distribution of weights for constructing the model's hidden layer;
    + 95            either 'uniform' or 'gaussian'
    + 96
    + 97    """
    + 98
    + 99    def __init__(
    +100        self,
    +101        n_estimators=100,
    +102        learning_rate=0.1,
    +103        n_hidden_features=5,
    +104        reg_lambda=0.1,
    +105        alpha=0.5,
    +106        row_sample=1,
    +107        col_sample=1,
    +108        dropout=0,
    +109        tolerance=1e-4,
    +110        direct_link=1,
    +111        verbose=1,
    +112        seed=123,
    +113        backend="cpu",
    +114        solver="ridge",
    +115        activation="relu",
    +116        type_pi=None,
    +117        replications=None,
    +118        kernel=None,
    +119        n_clusters=0,
    +120        clustering_method="kmeans",
    +121        cluster_scaling="standard",
    +122        degree=0,
    +123        weights_distr="uniform",
    +124    ):
    +125        if n_clusters > 0:
    +126            assert clustering_method in (
    +127                "kmeans",
    +128                "gmm",
    +129            ), "`clustering_method` must be in ('kmeans', 'gmm')"
    +130            assert cluster_scaling in (
    +131                "standard",
    +132                "robust",
    +133                "minmax",
    +134            ), "`cluster_scaling` must be in ('standard', 'robust', 'minmax')"
    +135
    +136        assert backend in (
    +137            "cpu",
    +138            "gpu",
    +139            "tpu",
    +140        ), "`backend` must be in ('cpu', 'gpu', 'tpu')"
    +141
    +142        assert solver in (
    +143            "ridge",
    +144            "lasso",
    +145            "enet",
    +146        ), "`solver` must be in ('ridge', 'lasso', 'enet')"
    +147
    +148        sys_platform = platform.system()
    +149
    +150        if (sys_platform == "Windows") and (backend in ("gpu", "tpu")):
    +151            warnings.warn(
    +152                "No GPU/TPU computing on Windows yet, backend set to 'cpu'"
    +153            )
    +154            backend = "cpu"
    +155
    +156        self.n_estimators = n_estimators
    +157        self.learning_rate = learning_rate
    +158        self.n_hidden_features = n_hidden_features
    +159        self.reg_lambda = reg_lambda
    +160        assert alpha >= 0 and alpha <= 1, "`alpha` must be in [0, 1]"
    +161        self.alpha = alpha
    +162        self.row_sample = row_sample
    +163        self.col_sample = col_sample
    +164        self.dropout = dropout
    +165        self.tolerance = tolerance
    +166        self.direct_link = direct_link
    +167        self.verbose = verbose
    +168        self.seed = seed
    +169        self.backend = backend
    +170        self.obj = None
    +171        self.solver = solver
    +172        self.activation = activation
    +173        self.type_pi = type_pi
    +174        self.replications = replications
    +175        self.kernel = kernel
    +176        self.n_clusters = n_clusters
    +177        self.clustering_method = clustering_method
    +178        self.cluster_scaling = cluster_scaling
    +179        self.scaler_, self.label_encoder_, self.clusterer_ = None, None, None
    +180        self.degree = degree
    +181        self.poly_ = None
    +182        self.weights_distr = weights_distr
    +183
    +184    def fit(self, X, y, **kwargs):
    +185        """Fit Booster (regressor) to training data (X, y)
    +186
    +187        Args:
    +188
    +189            X: {array-like}, shape = [n_samples, n_features]
    +190                Training vectors, where n_samples is the number
    +191                of samples and n_features is the number of features.
     192
    -193        if isinstance(X, pd.DataFrame):
    -194            X = X.values
    +193            y: array-like, shape = [n_samples]
    +194               Target values.
     195
    -196        if self.degree > 1:
    -197            self.poly_ = PolynomialFeatures(
    -198                degree=self.degree, interaction_only=True, include_bias=False
    -199            )
    -200            X = self.poly_.fit_transform(X)
    -201
    -202        if self.n_clusters > 0:
    -203            clustered_X, self.scaler_, self.label_encoder_, self.clusterer_ = (
    -204                cluster(
    -205                    X,
    -206                    n_clusters=self.n_clusters,
    -207                    method=self.clustering_method,
    -208                    type_scaling=self.cluster_scaling,
    -209                    training=True,
    -210                    seed=self.seed,
    -211                )
    -212            )
    -213            X = np.column_stack((X, clustered_X))
    -214
    -215        try:
    -216            self.obj = boosterc.fit_booster_regressor(
    -217                X=np.asarray(X, order="C"),
    -218                y=np.asarray(y, order="C"),
    -219                n_estimators=self.n_estimators,
    -220                learning_rate=self.learning_rate,
    -221                n_hidden_features=self.n_hidden_features,
    -222                reg_lambda=self.reg_lambda,
    -223                alpha=self.alpha,
    -224                row_sample=self.row_sample,
    -225                col_sample=self.col_sample,
    -226                dropout=self.dropout,
    -227                tolerance=self.tolerance,
    -228                direct_link=self.direct_link,
    -229                verbose=self.verbose,
    -230                seed=self.seed,
    -231                backend=self.backend,
    -232                solver=self.solver,
    -233                activation=self.activation,
    -234            )
    -235        except ValueError:
    -236            self.obj = _boosterc.fit_booster_regressor(
    -237                X=np.asarray(X, order="C"),
    -238                y=np.asarray(y, order="C"),
    -239                n_estimators=self.n_estimators,
    -240                learning_rate=self.learning_rate,
    -241                n_hidden_features=self.n_hidden_features,
    -242                reg_lambda=self.reg_lambda,
    -243                alpha=self.alpha,
    -244                row_sample=self.row_sample,
    -245                col_sample=self.col_sample,
    -246                dropout=self.dropout,
    -247                tolerance=self.tolerance,
    -248                direct_link=self.direct_link,
    -249                verbose=self.verbose,
    -250                seed=self.seed,
    -251                backend=self.backend,
    -252                solver=self.solver,
    -253                activation=self.activation,
    -254            )
    -255
    -256        self.n_estimators = self.obj["n_estimators"]
    -257
    -258        self.X_ = X
    -259
    -260        self.y_ = y
    -261
    -262        return self
    -263
    -264    def predict(self, X, level=95, method=None, **kwargs):
    -265        """Predict probabilities for test data X.
    -266
    -267        Args:
    -268
    -269            X: {array-like}, shape = [n_samples, n_features]
    -270                Training vectors, where n_samples is the number
    -271                of samples and n_features is the number of features.
    -272
    -273            level: int
    -274                Level of confidence (default = 95)
    -275
    -276            method: str
    -277                `None`, or 'splitconformal', 'localconformal'
    -278                prediction (if you specify `return_pi = True`)
    -279
    -280            **kwargs: additional parameters to be passed to
    -281                self.cook_test_set
    +196            **kwargs: additional parameters to be passed to self.cook_training_set.
    +197
    +198        Returns:
    +199
    +200            self: object.
    +201        """
    +202
    +203        if isinstance(X, pd.DataFrame):
    +204            X = X.values
    +205
    +206        if self.degree > 1:
    +207            self.poly_ = PolynomialFeatures(
    +208                degree=self.degree, interaction_only=True, include_bias=False
    +209            )
    +210            X = self.poly_.fit_transform(X)
    +211
    +212        if self.n_clusters > 0:
    +213            clustered_X, self.scaler_, self.label_encoder_, self.clusterer_ = (
    +214                cluster(
    +215                    X,
    +216                    n_clusters=self.n_clusters,
    +217                    method=self.clustering_method,
    +218                    type_scaling=self.cluster_scaling,
    +219                    training=True,
    +220                    seed=self.seed,
    +221                )
    +222            )
    +223            X = np.column_stack((X, clustered_X))
    +224
    +225        try:
    +226            self.obj = boosterc.fit_booster_regressor(
    +227                X=np.asarray(X, order="C"),
    +228                y=np.asarray(y, order="C"),
    +229                n_estimators=self.n_estimators,
    +230                learning_rate=self.learning_rate,
    +231                n_hidden_features=self.n_hidden_features,
    +232                reg_lambda=self.reg_lambda,
    +233                alpha=self.alpha,
    +234                row_sample=self.row_sample,
    +235                col_sample=self.col_sample,
    +236                dropout=self.dropout,
    +237                tolerance=self.tolerance,
    +238                direct_link=self.direct_link,
    +239                verbose=self.verbose,
    +240                seed=self.seed,
    +241                backend=self.backend,
    +242                solver=self.solver,
    +243                activation=self.activation,
    +244            )
    +245        except ValueError:
    +246            self.obj = _boosterc.fit_booster_regressor(
    +247                X=np.asarray(X, order="C"),
    +248                y=np.asarray(y, order="C"),
    +249                n_estimators=self.n_estimators,
    +250                learning_rate=self.learning_rate,
    +251                n_hidden_features=self.n_hidden_features,
    +252                reg_lambda=self.reg_lambda,
    +253                alpha=self.alpha,
    +254                row_sample=self.row_sample,
    +255                col_sample=self.col_sample,
    +256                dropout=self.dropout,
    +257                tolerance=self.tolerance,
    +258                direct_link=self.direct_link,
    +259                verbose=self.verbose,
    +260                seed=self.seed,
    +261                backend=self.backend,
    +262                solver=self.solver,
    +263                activation=self.activation,
    +264            )
    +265
    +266        self.n_estimators = self.obj["n_estimators"]
    +267
    +268        self.X_ = X
    +269
    +270        self.y_ = y
    +271
    +272        return self
    +273
    +274    def predict(self, X, level=95, method=None, **kwargs):
    +275        """Predict probabilities for test data X.
    +276
    +277        Args:
    +278
    +279            X: {array-like}, shape = [n_samples, n_features]
    +280                Training vectors, where n_samples is the number
    +281                of samples and n_features is the number of features.
     282
    -283        Returns:
    -284
    -285            probability estimates for test data: {array-like}
    -286        """
    -287
    -288        if isinstance(X, pd.DataFrame):
    -289            X = X.values
    -290
    -291        if self.degree > 0:
    -292            X = self.poly_.transform(X)
    -293
    -294        if self.n_clusters > 0:
    -295            X = np.column_stack(
    -296                (
    -297                    X,
    -298                    cluster(
    -299                        X,
    -300                        training=False,
    -301                        scaler=self.scaler_,
    -302                        label_encoder=self.label_encoder_,
    -303                        clusterer=self.clusterer_,
    -304                        seed=self.seed,
    -305                    ),
    -306                )
    -307            )
    -308        if "return_pi" in kwargs:
    -309            assert method in (
    -310                "splitconformal",
    -311                "localconformal",
    -312            ), "method must be in ('splitconformal', 'localconformal')"
    -313            self.pi = PredictionInterval(
    -314                obj=self,
    -315                method=method,
    -316                level=level,
    -317                type_pi=self.type_pi,
    -318                replications=self.replications,
    -319                kernel=self.kernel,
    -320            )
    -321            self.pi.fit(self.X_, self.y_)
    -322            self.X_ = None
    -323            self.y_ = None
    -324            preds = self.pi.predict(X, return_pi=True)
    -325            return preds
    -326
    -327        try:
    -328            return boosterc.predict_booster_regressor(
    -329                self.obj, np.asarray(X, order="C")
    +283            level: int
    +284                Level of confidence (default = 95)
    +285
    +286            method: str
    +287                `None`, or 'splitconformal', 'localconformal'
    +288                prediction (if you specify `return_pi = True`)
    +289
    +290            **kwargs: additional parameters to be passed to
    +291                self.cook_test_set
    +292
    +293        Returns:
    +294
    +295            probability estimates for test data: {array-like}
    +296        """
    +297
    +298        if isinstance(X, pd.DataFrame):
    +299            X = X.values
    +300
    +301        if self.degree > 0:
    +302            X = self.poly_.transform(X)
    +303
    +304        if self.n_clusters > 0:
    +305            X = np.column_stack(
    +306                (
    +307                    X,
    +308                    cluster(
    +309                        X,
    +310                        training=False,
    +311                        scaler=self.scaler_,
    +312                        label_encoder=self.label_encoder_,
    +313                        clusterer=self.clusterer_,
    +314                        seed=self.seed,
    +315                    ),
    +316                )
    +317            )
    +318        if "return_pi" in kwargs:
    +319            assert method in (
    +320                "splitconformal",
    +321                "localconformal",
    +322            ), "method must be in ('splitconformal', 'localconformal')"
    +323            self.pi = PredictionInterval(
    +324                obj=self,
    +325                method=method,
    +326                level=level,
    +327                type_pi=self.type_pi,
    +328                replications=self.replications,
    +329                kernel=self.kernel,
     330            )
    -331        except ValueError:
    -332            return _boosterc.predict_booster_regressor(
    -333                self.obj, np.asarray(X, order="C")
    -334            )
    +331            self.pi.fit(self.X_, self.y_)
    +332            self.X_ = None
    +333            self.y_ = None
    +334            preds = self.pi.predict(X, return_pi=True)
    +335            return preds
    +336
    +337        try:
    +338            return boosterc.predict_booster_regressor(
    +339                self.obj, np.asarray(X, order="C")
    +340            )
    +341        except ValueError:
    +342            return _boosterc.predict_booster_regressor(
    +343                self.obj, np.asarray(X, order="C")
    +344            )
     
    @@ -3186,6 +3206,10 @@

    degree: int degree of features interactions to include in the model + +weights_distr: str + distribution of weights for constructing the model's hidden layer; + either 'uniform' or 'gaussian'

    @@ -3201,95 +3225,95 @@

    -
    174    def fit(self, X, y, **kwargs):
    -175        """Fit Booster (regressor) to training data (X, y)
    -176
    -177        Args:
    -178
    -179            X: {array-like}, shape = [n_samples, n_features]
    -180                Training vectors, where n_samples is the number
    -181                of samples and n_features is the number of features.
    -182
    -183            y: array-like, shape = [n_samples]
    -184               Target values.
    -185
    -186            **kwargs: additional parameters to be passed to self.cook_training_set.
    -187
    -188        Returns:
    -189
    -190            self: object.
    -191        """
    +            
    184    def fit(self, X, y, **kwargs):
    +185        """Fit Booster (regressor) to training data (X, y)
    +186
    +187        Args:
    +188
    +189            X: {array-like}, shape = [n_samples, n_features]
    +190                Training vectors, where n_samples is the number
    +191                of samples and n_features is the number of features.
     192
    -193        if isinstance(X, pd.DataFrame):
    -194            X = X.values
    +193            y: array-like, shape = [n_samples]
    +194               Target values.
     195
    -196        if self.degree > 1:
    -197            self.poly_ = PolynomialFeatures(
    -198                degree=self.degree, interaction_only=True, include_bias=False
    -199            )
    -200            X = self.poly_.fit_transform(X)
    -201
    -202        if self.n_clusters > 0:
    -203            clustered_X, self.scaler_, self.label_encoder_, self.clusterer_ = (
    -204                cluster(
    -205                    X,
    -206                    n_clusters=self.n_clusters,
    -207                    method=self.clustering_method,
    -208                    type_scaling=self.cluster_scaling,
    -209                    training=True,
    -210                    seed=self.seed,
    -211                )
    -212            )
    -213            X = np.column_stack((X, clustered_X))
    -214
    -215        try:
    -216            self.obj = boosterc.fit_booster_regressor(
    -217                X=np.asarray(X, order="C"),
    -218                y=np.asarray(y, order="C"),
    -219                n_estimators=self.n_estimators,
    -220                learning_rate=self.learning_rate,
    -221                n_hidden_features=self.n_hidden_features,
    -222                reg_lambda=self.reg_lambda,
    -223                alpha=self.alpha,
    -224                row_sample=self.row_sample,
    -225                col_sample=self.col_sample,
    -226                dropout=self.dropout,
    -227                tolerance=self.tolerance,
    -228                direct_link=self.direct_link,
    -229                verbose=self.verbose,
    -230                seed=self.seed,
    -231                backend=self.backend,
    -232                solver=self.solver,
    -233                activation=self.activation,
    -234            )
    -235        except ValueError:
    -236            self.obj = _boosterc.fit_booster_regressor(
    -237                X=np.asarray(X, order="C"),
    -238                y=np.asarray(y, order="C"),
    -239                n_estimators=self.n_estimators,
    -240                learning_rate=self.learning_rate,
    -241                n_hidden_features=self.n_hidden_features,
    -242                reg_lambda=self.reg_lambda,
    -243                alpha=self.alpha,
    -244                row_sample=self.row_sample,
    -245                col_sample=self.col_sample,
    -246                dropout=self.dropout,
    -247                tolerance=self.tolerance,
    -248                direct_link=self.direct_link,
    -249                verbose=self.verbose,
    -250                seed=self.seed,
    -251                backend=self.backend,
    -252                solver=self.solver,
    -253                activation=self.activation,
    -254            )
    -255
    -256        self.n_estimators = self.obj["n_estimators"]
    -257
    -258        self.X_ = X
    -259
    -260        self.y_ = y
    -261
    -262        return self
    +196            **kwargs: additional parameters to be passed to self.cook_training_set.
    +197
    +198        Returns:
    +199
    +200            self: object.
    +201        """
    +202
    +203        if isinstance(X, pd.DataFrame):
    +204            X = X.values
    +205
    +206        if self.degree > 1:
    +207            self.poly_ = PolynomialFeatures(
    +208                degree=self.degree, interaction_only=True, include_bias=False
    +209            )
    +210            X = self.poly_.fit_transform(X)
    +211
    +212        if self.n_clusters > 0:
    +213            clustered_X, self.scaler_, self.label_encoder_, self.clusterer_ = (
    +214                cluster(
    +215                    X,
    +216                    n_clusters=self.n_clusters,
    +217                    method=self.clustering_method,
    +218                    type_scaling=self.cluster_scaling,
    +219                    training=True,
    +220                    seed=self.seed,
    +221                )
    +222            )
    +223            X = np.column_stack((X, clustered_X))
    +224
    +225        try:
    +226            self.obj = boosterc.fit_booster_regressor(
    +227                X=np.asarray(X, order="C"),
    +228                y=np.asarray(y, order="C"),
    +229                n_estimators=self.n_estimators,
    +230                learning_rate=self.learning_rate,
    +231                n_hidden_features=self.n_hidden_features,
    +232                reg_lambda=self.reg_lambda,
    +233                alpha=self.alpha,
    +234                row_sample=self.row_sample,
    +235                col_sample=self.col_sample,
    +236                dropout=self.dropout,
    +237                tolerance=self.tolerance,
    +238                direct_link=self.direct_link,
    +239                verbose=self.verbose,
    +240                seed=self.seed,
    +241                backend=self.backend,
    +242                solver=self.solver,
    +243                activation=self.activation,
    +244            )
    +245        except ValueError:
    +246            self.obj = _boosterc.fit_booster_regressor(
    +247                X=np.asarray(X, order="C"),
    +248                y=np.asarray(y, order="C"),
    +249                n_estimators=self.n_estimators,
    +250                learning_rate=self.learning_rate,
    +251                n_hidden_features=self.n_hidden_features,
    +252                reg_lambda=self.reg_lambda,
    +253                alpha=self.alpha,
    +254                row_sample=self.row_sample,
    +255                col_sample=self.col_sample,
    +256                dropout=self.dropout,
    +257                tolerance=self.tolerance,
    +258                direct_link=self.direct_link,
    +259                verbose=self.verbose,
    +260                seed=self.seed,
    +261                backend=self.backend,
    +262                solver=self.solver,
    +263                activation=self.activation,
    +264            )
    +265
    +266        self.n_estimators = self.obj["n_estimators"]
    +267
    +268        self.X_ = X
    +269
    +270        self.y_ = y
    +271
    +272        return self
     
    @@ -3326,77 +3350,77 @@

    -
    264    def predict(self, X, level=95, method=None, **kwargs):
    -265        """Predict probabilities for test data X.
    -266
    -267        Args:
    -268
    -269            X: {array-like}, shape = [n_samples, n_features]
    -270                Training vectors, where n_samples is the number
    -271                of samples and n_features is the number of features.
    -272
    -273            level: int
    -274                Level of confidence (default = 95)
    -275
    -276            method: str
    -277                `None`, or 'splitconformal', 'localconformal'
    -278                prediction (if you specify `return_pi = True`)
    -279
    -280            **kwargs: additional parameters to be passed to
    -281                self.cook_test_set
    +            
    274    def predict(self, X, level=95, method=None, **kwargs):
    +275        """Predict probabilities for test data X.
    +276
    +277        Args:
    +278
    +279            X: {array-like}, shape = [n_samples, n_features]
    +280                Training vectors, where n_samples is the number
    +281                of samples and n_features is the number of features.
     282
    -283        Returns:
    -284
    -285            probability estimates for test data: {array-like}
    -286        """
    -287
    -288        if isinstance(X, pd.DataFrame):
    -289            X = X.values
    -290
    -291        if self.degree > 0:
    -292            X = self.poly_.transform(X)
    -293
    -294        if self.n_clusters > 0:
    -295            X = np.column_stack(
    -296                (
    -297                    X,
    -298                    cluster(
    -299                        X,
    -300                        training=False,
    -301                        scaler=self.scaler_,
    -302                        label_encoder=self.label_encoder_,
    -303                        clusterer=self.clusterer_,
    -304                        seed=self.seed,
    -305                    ),
    -306                )
    -307            )
    -308        if "return_pi" in kwargs:
    -309            assert method in (
    -310                "splitconformal",
    -311                "localconformal",
    -312            ), "method must be in ('splitconformal', 'localconformal')"
    -313            self.pi = PredictionInterval(
    -314                obj=self,
    -315                method=method,
    -316                level=level,
    -317                type_pi=self.type_pi,
    -318                replications=self.replications,
    -319                kernel=self.kernel,
    -320            )
    -321            self.pi.fit(self.X_, self.y_)
    -322            self.X_ = None
    -323            self.y_ = None
    -324            preds = self.pi.predict(X, return_pi=True)
    -325            return preds
    -326
    -327        try:
    -328            return boosterc.predict_booster_regressor(
    -329                self.obj, np.asarray(X, order="C")
    +283            level: int
    +284                Level of confidence (default = 95)
    +285
    +286            method: str
    +287                `None`, or 'splitconformal', 'localconformal'
    +288                prediction (if you specify `return_pi = True`)
    +289
    +290            **kwargs: additional parameters to be passed to
    +291                self.cook_test_set
    +292
    +293        Returns:
    +294
    +295            probability estimates for test data: {array-like}
    +296        """
    +297
    +298        if isinstance(X, pd.DataFrame):
    +299            X = X.values
    +300
    +301        if self.degree > 0:
    +302            X = self.poly_.transform(X)
    +303
    +304        if self.n_clusters > 0:
    +305            X = np.column_stack(
    +306                (
    +307                    X,
    +308                    cluster(
    +309                        X,
    +310                        training=False,
    +311                        scaler=self.scaler_,
    +312                        label_encoder=self.label_encoder_,
    +313                        clusterer=self.clusterer_,
    +314                        seed=self.seed,
    +315                    ),
    +316                )
    +317            )
    +318        if "return_pi" in kwargs:
    +319            assert method in (
    +320                "splitconformal",
    +321                "localconformal",
    +322            ), "method must be in ('splitconformal', 'localconformal')"
    +323            self.pi = PredictionInterval(
    +324                obj=self,
    +325                method=method,
    +326                level=level,
    +327                type_pi=self.type_pi,
    +328                replications=self.replications,
    +329                kernel=self.kernel,
     330            )
    -331        except ValueError:
    -332            return _boosterc.predict_booster_regressor(
    -333                self.obj, np.asarray(X, order="C")
    -334            )
    +331            self.pi.fit(self.X_, self.y_)
    +332            self.X_ = None
    +333            self.y_ = None
    +334            preds = self.pi.predict(X, return_pi=True)
    +335            return preds
    +336
    +337        try:
    +338            return boosterc.predict_booster_regressor(
    +339                self.obj, np.asarray(X, order="C")
    +340            )
    +341        except ValueError:
    +342            return _boosterc.predict_booster_regressor(
    +343                self.obj, np.asarray(X, order="C")
    +344            )
     
    diff --git a/mlsauce-docs/mlsauce/booster.html b/mlsauce-docs/mlsauce/booster.html index 9355fc0..ba2ef69 100644 --- a/mlsauce-docs/mlsauce/booster.html +++ b/mlsauce-docs/mlsauce/booster.html @@ -87,6 +87,8 @@

    API Documentation

  • +
  • +
  • @@ -152,6 +154,8 @@

    API Documentation

  • +
  • +
  • @@ -262,235 +266,241 @@

    80 degree: int 81 degree of features interactions to include in the model 82 - 83 """ - 84 - 85 def __init__( - 86 self, - 87 n_estimators=100, - 88 learning_rate=0.1, - 89 n_hidden_features=5, - 90 reg_lambda=0.1, - 91 alpha=0.5, - 92 row_sample=1, - 93 col_sample=1, - 94 dropout=0, - 95 tolerance=1e-4, - 96 direct_link=1, - 97 verbose=1, - 98 seed=123, - 99 backend="cpu", -100 solver="ridge", -101 activation="relu", -102 n_clusters=0, -103 clustering_method="kmeans", -104 cluster_scaling="standard", -105 degree=0, -106 ): -107 if n_clusters > 0: -108 assert clustering_method in ( -109 "kmeans", -110 "gmm", -111 ), "`clustering_method` must be in ('kmeans', 'gmm')" -112 assert cluster_scaling in ( -113 "standard", -114 "robust", -115 "minmax", -116 ), "`cluster_scaling` must be in ('standard', 'robust', 'minmax')" -117 -118 assert backend in ( -119 "cpu", -120 "gpu", -121 "tpu", -122 ), "`backend` must be in ('cpu', 'gpu', 'tpu')" -123 -124 assert solver in ( -125 "ridge", -126 "lasso", -127 "enet", -128 ), "`solver` must be in ('ridge', 'lasso', 'enet')" -129 -130 sys_platform = platform.system() -131 -132 if (sys_platform == "Windows") and (backend in ("gpu", "tpu")): -133 warnings.warn( -134 "No GPU/TPU computing on Windows yet, backend set to 'cpu'" -135 ) -136 backend = "cpu" -137 -138 self.n_estimators = n_estimators -139 self.learning_rate = learning_rate -140 self.n_hidden_features = n_hidden_features -141 self.reg_lambda = reg_lambda -142 assert alpha >= 0 and alpha <= 1, "`alpha` must be in [0, 1]" -143 self.alpha = alpha -144 self.row_sample = row_sample -145 self.col_sample = col_sample -146 self.dropout = dropout -147 self.tolerance = tolerance -148 self.direct_link = direct_link -149 self.verbose = verbose -150 self.seed = seed -151 self.backend = backend -152 self.obj = None -153 self.solver = solver -154 self.activation = activation -155 self.n_clusters = n_clusters -156 self.clustering_method = clustering_method -157 self.cluster_scaling = cluster_scaling -158 self.scaler_, self.label_encoder_, self.clusterer_ = None, None, None -159 self.degree = degree -160 self.poly_ = None -161 -162 def fit(self, X, y, **kwargs): -163 """Fit Booster (classifier) to training data (X, y) -164 -165 Args: -166 -167 X: {array-like}, shape = [n_samples, n_features] -168 Training vectors, where n_samples is the number -169 of samples and n_features is the number of features. + 83 weights_distr: str + 84 distribution of weights for constructing the model's hidden layer; + 85 currently 'uniform', 'gaussian' + 86 + 87 """ + 88 + 89 def __init__( + 90 self, + 91 n_estimators=100, + 92 learning_rate=0.1, + 93 n_hidden_features=5, + 94 reg_lambda=0.1, + 95 alpha=0.5, + 96 row_sample=1, + 97 col_sample=1, + 98 dropout=0, + 99 tolerance=1e-4, +100 direct_link=1, +101 verbose=1, +102 seed=123, +103 backend="cpu", +104 solver="ridge", +105 activation="relu", +106 n_clusters=0, +107 clustering_method="kmeans", +108 cluster_scaling="standard", +109 degree=0, +110 weights_distr="uniform", +111 ): +112 if n_clusters > 0: +113 assert clustering_method in ( +114 "kmeans", +115 "gmm", +116 ), "`clustering_method` must be in ('kmeans', 'gmm')" +117 assert cluster_scaling in ( +118 "standard", +119 "robust", +120 "minmax", +121 ), "`cluster_scaling` must be in ('standard', 'robust', 'minmax')" +122 +123 assert backend in ( +124 "cpu", +125 "gpu", +126 "tpu", +127 ), "`backend` must be in ('cpu', 'gpu', 'tpu')" +128 +129 assert solver in ( +130 "ridge", +131 "lasso", +132 "enet", +133 ), "`solver` must be in ('ridge', 'lasso', 'enet')" +134 +135 sys_platform = platform.system() +136 +137 if (sys_platform == "Windows") and (backend in ("gpu", "tpu")): +138 warnings.warn( +139 "No GPU/TPU computing on Windows yet, backend set to 'cpu'" +140 ) +141 backend = "cpu" +142 +143 self.n_estimators = n_estimators +144 self.learning_rate = learning_rate +145 self.n_hidden_features = n_hidden_features +146 self.reg_lambda = reg_lambda +147 assert alpha >= 0 and alpha <= 1, "`alpha` must be in [0, 1]" +148 self.alpha = alpha +149 self.row_sample = row_sample +150 self.col_sample = col_sample +151 self.dropout = dropout +152 self.tolerance = tolerance +153 self.direct_link = direct_link +154 self.verbose = verbose +155 self.seed = seed +156 self.backend = backend +157 self.obj = None +158 self.solver = solver +159 self.activation = activation +160 self.n_clusters = n_clusters +161 self.clustering_method = clustering_method +162 self.cluster_scaling = cluster_scaling +163 self.scaler_, self.label_encoder_, self.clusterer_ = None, None, None +164 self.degree = degree +165 self.poly_ = None +166 self.weights_distr = weights_distr +167 +168 def fit(self, X, y, **kwargs): +169 """Fit Booster (classifier) to training data (X, y) 170 -171 y: array-like, shape = [n_samples] -172 Target values. -173 -174 **kwargs: additional parameters to be passed to self.cook_training_set. -175 -176 Returns: -177 -178 self: object. -179 """ -180 -181 if isinstance(X, pd.DataFrame): -182 X = X.values +171 Args: +172 +173 X: {array-like}, shape = [n_samples, n_features] +174 Training vectors, where n_samples is the number +175 of samples and n_features is the number of features. +176 +177 y: array-like, shape = [n_samples] +178 Target values. +179 +180 **kwargs: additional parameters to be passed to self.cook_training_set. +181 +182 Returns: 183 -184 if self.degree > 1: -185 self.poly_ = PolynomialFeatures( -186 degree=self.degree, interaction_only=True, include_bias=False -187 ) -188 X = self.poly_.fit_transform(X) +184 self: object. +185 """ +186 +187 if isinstance(X, pd.DataFrame): +188 X = X.values 189 -190 if self.n_clusters > 0: -191 clustered_X, self.scaler_, self.label_encoder_, self.clusterer_ = ( -192 cluster( -193 X, -194 n_clusters=self.n_clusters, -195 method=self.clustering_method, -196 type_scaling=self.cluster_scaling, -197 training=True, -198 seed=self.seed, -199 ) -200 ) -201 X = np.column_stack((X, clustered_X)) -202 -203 try: -204 self.obj = boosterc.fit_booster_classifier( -205 np.asarray(X, order="C"), -206 np.asarray(y, order="C"), -207 n_estimators=self.n_estimators, -208 learning_rate=self.learning_rate, -209 n_hidden_features=self.n_hidden_features, -210 reg_lambda=self.reg_lambda, -211 alpha=self.alpha, -212 row_sample=self.row_sample, -213 col_sample=self.col_sample, -214 dropout=self.dropout, -215 tolerance=self.tolerance, -216 direct_link=self.direct_link, -217 verbose=self.verbose, -218 seed=self.seed, -219 backend=self.backend, -220 solver=self.solver, -221 activation=self.activation, -222 ) -223 except ValueError: -224 self.obj = _boosterc.fit_booster_classifier( -225 np.asarray(X, order="C"), -226 np.asarray(y, order="C"), -227 n_estimators=self.n_estimators, -228 learning_rate=self.learning_rate, -229 n_hidden_features=self.n_hidden_features, -230 reg_lambda=self.reg_lambda, -231 alpha=self.alpha, -232 row_sample=self.row_sample, -233 col_sample=self.col_sample, -234 dropout=self.dropout, -235 tolerance=self.tolerance, -236 direct_link=self.direct_link, -237 verbose=self.verbose, -238 seed=self.seed, -239 backend=self.backend, -240 solver=self.solver, -241 activation=self.activation, -242 ) -243 -244 self.n_classes_ = len(np.unique(y)) # for compatibility with sklearn -245 self.n_estimators = self.obj["n_estimators"] -246 return self -247 -248 def predict(self, X, **kwargs): -249 """Predict test data X. -250 -251 Args: -252 -253 X: {array-like}, shape = [n_samples, n_features] -254 Training vectors, where n_samples is the number -255 of samples and n_features is the number of features. +190 if self.degree > 1: +191 self.poly_ = PolynomialFeatures( +192 degree=self.degree, interaction_only=True, include_bias=False +193 ) +194 X = self.poly_.fit_transform(X) +195 +196 if self.n_clusters > 0: +197 clustered_X, self.scaler_, self.label_encoder_, self.clusterer_ = ( +198 cluster( +199 X, +200 n_clusters=self.n_clusters, +201 method=self.clustering_method, +202 type_scaling=self.cluster_scaling, +203 training=True, +204 seed=self.seed, +205 ) +206 ) +207 X = np.column_stack((X, clustered_X)) +208 +209 try: +210 self.obj = boosterc.fit_booster_classifier( +211 np.asarray(X, order="C"), +212 np.asarray(y, order="C"), +213 n_estimators=self.n_estimators, +214 learning_rate=self.learning_rate, +215 n_hidden_features=self.n_hidden_features, +216 reg_lambda=self.reg_lambda, +217 alpha=self.alpha, +218 row_sample=self.row_sample, +219 col_sample=self.col_sample, +220 dropout=self.dropout, +221 tolerance=self.tolerance, +222 direct_link=self.direct_link, +223 verbose=self.verbose, +224 seed=self.seed, +225 backend=self.backend, +226 solver=self.solver, +227 activation=self.activation, +228 ) +229 except ValueError: +230 self.obj = _boosterc.fit_booster_classifier( +231 np.asarray(X, order="C"), +232 np.asarray(y, order="C"), +233 n_estimators=self.n_estimators, +234 learning_rate=self.learning_rate, +235 n_hidden_features=self.n_hidden_features, +236 reg_lambda=self.reg_lambda, +237 alpha=self.alpha, +238 row_sample=self.row_sample, +239 col_sample=self.col_sample, +240 dropout=self.dropout, +241 tolerance=self.tolerance, +242 direct_link=self.direct_link, +243 verbose=self.verbose, +244 seed=self.seed, +245 backend=self.backend, +246 solver=self.solver, +247 activation=self.activation, +248 ) +249 +250 self.n_classes_ = len(np.unique(y)) # for compatibility with sklearn +251 self.n_estimators = self.obj["n_estimators"] +252 return self +253 +254 def predict(self, X, **kwargs): +255 """Predict test data X. 256 -257 **kwargs: additional parameters to be passed to `predict_proba` +257 Args: 258 -259 -260 Returns: -261 -262 model predictions: {array-like} -263 """ +259 X: {array-like}, shape = [n_samples, n_features] +260 Training vectors, where n_samples is the number +261 of samples and n_features is the number of features. +262 +263 **kwargs: additional parameters to be passed to `predict_proba` 264 -265 return np.argmax(self.predict_proba(X, **kwargs), axis=1) -266 -267 def predict_proba(self, X, **kwargs): -268 """Predict probabilities for test data X. -269 -270 Args: -271 -272 X: {array-like}, shape = [n_samples, n_features] -273 Training vectors, where n_samples is the number -274 of samples and n_features is the number of features. +265 +266 Returns: +267 +268 model predictions: {array-like} +269 """ +270 +271 return np.argmax(self.predict_proba(X, **kwargs), axis=1) +272 +273 def predict_proba(self, X, **kwargs): +274 """Predict probabilities for test data X. 275 -276 **kwargs: additional parameters to be passed to -277 self.cook_test_set -278 -279 Returns: -280 -281 probability estimates for test data: {array-like} -282 """ -283 -284 if isinstance(X, pd.DataFrame): -285 X = X.values +276 Args: +277 +278 X: {array-like}, shape = [n_samples, n_features] +279 Training vectors, where n_samples is the number +280 of samples and n_features is the number of features. +281 +282 **kwargs: additional parameters to be passed to +283 self.cook_test_set +284 +285 Returns: 286 -287 if self.degree > 0: -288 X = self.poly_.transform(X) +287 probability estimates for test data: {array-like} +288 """ 289 -290 if self.n_clusters > 0: -291 X = np.column_stack( -292 ( -293 X, -294 cluster( -295 X, -296 training=False, -297 scaler=self.scaler_, -298 label_encoder=self.label_encoder_, -299 clusterer=self.clusterer_, -300 seed=self.seed, -301 ), -302 ) -303 ) -304 try: -305 return boosterc.predict_proba_booster_classifier( -306 self.obj, np.asarray(X, order="C") -307 ) -308 except ValueError: -309 return _boosterc.predict_proba_booster_classifier( -310 self.obj, np.asarray(X, order="C") -311 ) +290 if isinstance(X, pd.DataFrame): +291 X = X.values +292 +293 if self.degree > 0: +294 X = self.poly_.transform(X) +295 +296 if self.n_clusters > 0: +297 X = np.column_stack( +298 ( +299 X, +300 cluster( +301 X, +302 training=False, +303 scaler=self.scaler_, +304 label_encoder=self.label_encoder_, +305 clusterer=self.clusterer_, +306 seed=self.seed, +307 ), +308 ) +309 ) +310 try: +311 return boosterc.predict_proba_booster_classifier( +312 self.obj, np.asarray(X, order="C") +313 ) +314 except ValueError: +315 return _boosterc.predict_proba_booster_classifier( +316 self.obj, np.asarray(X, order="C") +317 )

    @@ -558,6 +568,10 @@

    degree: int degree of features interactions to include in the model + +weights_distr: str + distribution of weights for constructing the model's hidden layer; + currently 'uniform', 'gaussian' @@ -573,91 +587,91 @@

    -
    162    def fit(self, X, y, **kwargs):
    -163        """Fit Booster (classifier) to training data (X, y)
    -164
    -165        Args:
    -166
    -167            X: {array-like}, shape = [n_samples, n_features]
    -168                Training vectors, where n_samples is the number
    -169                of samples and n_features is the number of features.
    +            
    168    def fit(self, X, y, **kwargs):
    +169        """Fit Booster (classifier) to training data (X, y)
     170
    -171            y: array-like, shape = [n_samples]
    -172                Target values.
    -173
    -174            **kwargs: additional parameters to be passed to self.cook_training_set.
    -175
    -176        Returns:
    -177
    -178            self: object.
    -179        """
    -180
    -181        if isinstance(X, pd.DataFrame):
    -182            X = X.values
    +171        Args:
    +172
    +173            X: {array-like}, shape = [n_samples, n_features]
    +174                Training vectors, where n_samples is the number
    +175                of samples and n_features is the number of features.
    +176
    +177            y: array-like, shape = [n_samples]
    +178                Target values.
    +179
    +180            **kwargs: additional parameters to be passed to self.cook_training_set.
    +181
    +182        Returns:
     183
    -184        if self.degree > 1:
    -185            self.poly_ = PolynomialFeatures(
    -186                degree=self.degree, interaction_only=True, include_bias=False
    -187            )
    -188            X = self.poly_.fit_transform(X)
    +184            self: object.
    +185        """
    +186
    +187        if isinstance(X, pd.DataFrame):
    +188            X = X.values
     189
    -190        if self.n_clusters > 0:
    -191            clustered_X, self.scaler_, self.label_encoder_, self.clusterer_ = (
    -192                cluster(
    -193                    X,
    -194                    n_clusters=self.n_clusters,
    -195                    method=self.clustering_method,
    -196                    type_scaling=self.cluster_scaling,
    -197                    training=True,
    -198                    seed=self.seed,
    -199                )
    -200            )
    -201            X = np.column_stack((X, clustered_X))
    -202
    -203        try:
    -204            self.obj = boosterc.fit_booster_classifier(
    -205                np.asarray(X, order="C"),
    -206                np.asarray(y, order="C"),
    -207                n_estimators=self.n_estimators,
    -208                learning_rate=self.learning_rate,
    -209                n_hidden_features=self.n_hidden_features,
    -210                reg_lambda=self.reg_lambda,
    -211                alpha=self.alpha,
    -212                row_sample=self.row_sample,
    -213                col_sample=self.col_sample,
    -214                dropout=self.dropout,
    -215                tolerance=self.tolerance,
    -216                direct_link=self.direct_link,
    -217                verbose=self.verbose,
    -218                seed=self.seed,
    -219                backend=self.backend,
    -220                solver=self.solver,
    -221                activation=self.activation,
    -222            )
    -223        except ValueError:
    -224            self.obj = _boosterc.fit_booster_classifier(
    -225                np.asarray(X, order="C"),
    -226                np.asarray(y, order="C"),
    -227                n_estimators=self.n_estimators,
    -228                learning_rate=self.learning_rate,
    -229                n_hidden_features=self.n_hidden_features,
    -230                reg_lambda=self.reg_lambda,
    -231                alpha=self.alpha,
    -232                row_sample=self.row_sample,
    -233                col_sample=self.col_sample,
    -234                dropout=self.dropout,
    -235                tolerance=self.tolerance,
    -236                direct_link=self.direct_link,
    -237                verbose=self.verbose,
    -238                seed=self.seed,
    -239                backend=self.backend,
    -240                solver=self.solver,
    -241                activation=self.activation,
    -242            )
    -243
    -244        self.n_classes_ = len(np.unique(y))  # for compatibility with sklearn
    -245        self.n_estimators = self.obj["n_estimators"]
    -246        return self
    +190        if self.degree > 1:
    +191            self.poly_ = PolynomialFeatures(
    +192                degree=self.degree, interaction_only=True, include_bias=False
    +193            )
    +194            X = self.poly_.fit_transform(X)
    +195
    +196        if self.n_clusters > 0:
    +197            clustered_X, self.scaler_, self.label_encoder_, self.clusterer_ = (
    +198                cluster(
    +199                    X,
    +200                    n_clusters=self.n_clusters,
    +201                    method=self.clustering_method,
    +202                    type_scaling=self.cluster_scaling,
    +203                    training=True,
    +204                    seed=self.seed,
    +205                )
    +206            )
    +207            X = np.column_stack((X, clustered_X))
    +208
    +209        try:
    +210            self.obj = boosterc.fit_booster_classifier(
    +211                np.asarray(X, order="C"),
    +212                np.asarray(y, order="C"),
    +213                n_estimators=self.n_estimators,
    +214                learning_rate=self.learning_rate,
    +215                n_hidden_features=self.n_hidden_features,
    +216                reg_lambda=self.reg_lambda,
    +217                alpha=self.alpha,
    +218                row_sample=self.row_sample,
    +219                col_sample=self.col_sample,
    +220                dropout=self.dropout,
    +221                tolerance=self.tolerance,
    +222                direct_link=self.direct_link,
    +223                verbose=self.verbose,
    +224                seed=self.seed,
    +225                backend=self.backend,
    +226                solver=self.solver,
    +227                activation=self.activation,
    +228            )
    +229        except ValueError:
    +230            self.obj = _boosterc.fit_booster_classifier(
    +231                np.asarray(X, order="C"),
    +232                np.asarray(y, order="C"),
    +233                n_estimators=self.n_estimators,
    +234                learning_rate=self.learning_rate,
    +235                n_hidden_features=self.n_hidden_features,
    +236                reg_lambda=self.reg_lambda,
    +237                alpha=self.alpha,
    +238                row_sample=self.row_sample,
    +239                col_sample=self.col_sample,
    +240                dropout=self.dropout,
    +241                tolerance=self.tolerance,
    +242                direct_link=self.direct_link,
    +243                verbose=self.verbose,
    +244                seed=self.seed,
    +245                backend=self.backend,
    +246                solver=self.solver,
    +247                activation=self.activation,
    +248            )
    +249
    +250        self.n_classes_ = len(np.unique(y))  # for compatibility with sklearn
    +251        self.n_estimators = self.obj["n_estimators"]
    +252        return self
     
    @@ -694,24 +708,24 @@

    -
    248    def predict(self, X, **kwargs):
    -249        """Predict test data X.
    -250
    -251        Args:
    -252
    -253            X: {array-like}, shape = [n_samples, n_features]
    -254                Training vectors, where n_samples is the number
    -255                of samples and n_features is the number of features.
    +            
    254    def predict(self, X, **kwargs):
    +255        """Predict test data X.
     256
    -257            **kwargs: additional parameters to be passed to `predict_proba`
    +257        Args:
     258
    -259
    -260        Returns:
    -261
    -262            model predictions: {array-like}
    -263        """
    +259            X: {array-like}, shape = [n_samples, n_features]
    +260                Training vectors, where n_samples is the number
    +261                of samples and n_features is the number of features.
    +262
    +263            **kwargs: additional parameters to be passed to `predict_proba`
     264
    -265        return np.argmax(self.predict_proba(X, **kwargs), axis=1)
    +265
    +266        Returns:
    +267
    +268            model predictions: {array-like}
    +269        """
    +270
    +271        return np.argmax(self.predict_proba(X, **kwargs), axis=1)
     
    @@ -745,51 +759,51 @@

    -
    267    def predict_proba(self, X, **kwargs):
    -268        """Predict probabilities for test data X.
    -269
    -270        Args:
    -271
    -272            X: {array-like}, shape = [n_samples, n_features]
    -273                Training vectors, where n_samples is the number
    -274                of samples and n_features is the number of features.
    +            
    273    def predict_proba(self, X, **kwargs):
    +274        """Predict probabilities for test data X.
     275
    -276            **kwargs: additional parameters to be passed to
    -277                self.cook_test_set
    -278
    -279        Returns:
    -280
    -281            probability estimates for test data: {array-like}
    -282        """
    -283
    -284        if isinstance(X, pd.DataFrame):
    -285            X = X.values
    +276        Args:
    +277
    +278            X: {array-like}, shape = [n_samples, n_features]
    +279                Training vectors, where n_samples is the number
    +280                of samples and n_features is the number of features.
    +281
    +282            **kwargs: additional parameters to be passed to
    +283                self.cook_test_set
    +284
    +285        Returns:
     286
    -287        if self.degree > 0:
    -288            X = self.poly_.transform(X)
    +287            probability estimates for test data: {array-like}
    +288        """
     289
    -290        if self.n_clusters > 0:
    -291            X = np.column_stack(
    -292                (
    -293                    X,
    -294                    cluster(
    -295                        X,
    -296                        training=False,
    -297                        scaler=self.scaler_,
    -298                        label_encoder=self.label_encoder_,
    -299                        clusterer=self.clusterer_,
    -300                        seed=self.seed,
    -301                    ),
    -302                )
    -303            )
    -304        try:
    -305            return boosterc.predict_proba_booster_classifier(
    -306                self.obj, np.asarray(X, order="C")
    -307            )
    -308        except ValueError:
    -309            return _boosterc.predict_proba_booster_classifier(
    -310                self.obj, np.asarray(X, order="C")
    -311            )
    +290        if isinstance(X, pd.DataFrame):
    +291            X = X.values
    +292
    +293        if self.degree > 0:
    +294            X = self.poly_.transform(X)
    +295
    +296        if self.n_clusters > 0:
    +297            X = np.column_stack(
    +298                (
    +299                    X,
    +300                    cluster(
    +301                        X,
    +302                        training=False,
    +303                        scaler=self.scaler_,
    +304                        label_encoder=self.label_encoder_,
    +305                        clusterer=self.clusterer_,
    +306                        seed=self.seed,
    +307                    ),
    +308                )
    +309            )
    +310        try:
    +311            return boosterc.predict_proba_booster_classifier(
    +312                self.obj, np.asarray(X, order="C")
    +313            )
    +314        except ValueError:
    +315            return _boosterc.predict_proba_booster_classifier(
    +316                self.obj, np.asarray(X, order="C")
    +317            )
     
    @@ -826,327 +840,333 @@

    -
     14class LSBoostRegressor(BaseEstimator, RegressorMixin):
    - 15    """LSBoost regressor.
    - 16
    - 17    Attributes:
    - 18
    - 19        n_estimators: int
    - 20            number of boosting iterations.
    - 21
    - 22        learning_rate: float
    - 23            controls the learning speed at training time.
    - 24
    - 25        n_hidden_features: int
    - 26            number of nodes in successive hidden layers.
    - 27
    - 28        reg_lambda: float
    - 29            L2 regularization parameter for successive errors in the optimizer
    - 30            (at training time).
    +            
     18class LSBoostRegressor(BaseEstimator, RegressorMixin):
    + 19    """LSBoost regressor.
    + 20
    + 21    Attributes:
    + 22
    + 23        n_estimators: int
    + 24            number of boosting iterations.
    + 25
    + 26        learning_rate: float
    + 27            controls the learning speed at training time.
    + 28
    + 29        n_hidden_features: int
    + 30            number of nodes in successive hidden layers.
      31
    - 32        alpha: float
    - 33            compromise between L1 and L2 regularization (must be in [0, 1]),
    - 34            for `solver` == 'enet'
    + 32        reg_lambda: float
    + 33            L2 regularization parameter for successive errors in the optimizer
    + 34            (at training time).
      35
    - 36        row_sample: float
    - 37            percentage of rows chosen from the training set.
    - 38
    - 39        col_sample: float
    - 40            percentage of columns chosen from the training set.
    - 41
    - 42        dropout: float
    - 43            percentage of nodes dropped from the training set.
    - 44
    - 45        tolerance: float
    - 46            controls early stopping in gradient descent (at training time).
    - 47
    - 48        direct_link: bool
    - 49            indicates whether the original features are included (True) in model's
    - 50            fitting or not (False).
    + 36        alpha: float
    + 37            compromise between L1 and L2 regularization (must be in [0, 1]),
    + 38            for `solver` == 'enet'
    + 39
    + 40        row_sample: float
    + 41            percentage of rows chosen from the training set.
    + 42
    + 43        col_sample: float
    + 44            percentage of columns chosen from the training set.
    + 45
    + 46        dropout: float
    + 47            percentage of nodes dropped from the training set.
    + 48
    + 49        tolerance: float
    + 50            controls early stopping in gradient descent (at training time).
      51
    - 52        verbose: int
    - 53            progress bar (yes = 1) or not (no = 0) (currently).
    - 54
    - 55        seed: int
    - 56            reproducibility seed for nodes_sim=='uniform', clustering and dropout.
    - 57
    - 58        backend: str
    - 59            type of backend; must be in ('cpu', 'gpu', 'tpu')
    - 60
    - 61        solver: str
    - 62            type of 'weak' learner; currently in ('ridge', 'lasso')
    - 63
    - 64        activation: str
    - 65            activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'
    - 66
    - 67        type_pi: str.
    - 68            type of prediction interval; currently "kde" (default) or "bootstrap".
    - 69            Used only in `self.predict`, for `self.replications` > 0 and `self.kernel`
    - 70            in ('gaussian', 'tophat'). Default is `None`.
    - 71
    - 72        replications: int.
    - 73            number of replications (if needed) for predictive simulation.
    - 74            Used only in `self.predict`, for `self.kernel` in ('gaussian',
    - 75            'tophat') and `self.type_pi = 'kde'`. Default is `None`.
    - 76
    - 77        n_clusters: int
    - 78            number of clusters for clustering the features
    - 79
    - 80        clustering_method: str
    - 81            clustering method: currently 'kmeans', 'gmm'
    - 82
    - 83        cluster_scaling: str
    - 84            scaling method for clustering: currently 'standard', 'robust', 'minmax'
    - 85
    - 86        degree: int
    - 87            degree of features interactions to include in the model
    - 88
    - 89    """
    - 90
    - 91    def __init__(
    - 92        self,
    - 93        n_estimators=100,
    - 94        learning_rate=0.1,
    - 95        n_hidden_features=5,
    - 96        reg_lambda=0.1,
    - 97        alpha=0.5,
    - 98        row_sample=1,
    - 99        col_sample=1,
    -100        dropout=0,
    -101        tolerance=1e-4,
    -102        direct_link=1,
    -103        verbose=1,
    -104        seed=123,
    -105        backend="cpu",
    -106        solver="ridge",
    -107        activation="relu",
    -108        type_pi=None,
    -109        replications=None,
    -110        kernel=None,
    -111        n_clusters=0,
    -112        clustering_method="kmeans",
    -113        cluster_scaling="standard",
    -114        degree=0,
    -115    ):
    -116        if n_clusters > 0:
    -117            assert clustering_method in (
    -118                "kmeans",
    -119                "gmm",
    -120            ), "`clustering_method` must be in ('kmeans', 'gmm')"
    -121            assert cluster_scaling in (
    -122                "standard",
    -123                "robust",
    -124                "minmax",
    -125            ), "`cluster_scaling` must be in ('standard', 'robust', 'minmax')"
    -126
    -127        assert backend in (
    -128            "cpu",
    -129            "gpu",
    -130            "tpu",
    -131        ), "`backend` must be in ('cpu', 'gpu', 'tpu')"
    -132
    -133        assert solver in (
    -134            "ridge",
    -135            "lasso",
    -136            "enet",
    -137        ), "`solver` must be in ('ridge', 'lasso', 'enet')"
    -138
    -139        sys_platform = platform.system()
    -140
    -141        if (sys_platform == "Windows") and (backend in ("gpu", "tpu")):
    -142            warnings.warn(
    -143                "No GPU/TPU computing on Windows yet, backend set to 'cpu'"
    -144            )
    -145            backend = "cpu"
    -146
    -147        self.n_estimators = n_estimators
    -148        self.learning_rate = learning_rate
    -149        self.n_hidden_features = n_hidden_features
    -150        self.reg_lambda = reg_lambda
    -151        assert alpha >= 0 and alpha <= 1, "`alpha` must be in [0, 1]"
    -152        self.alpha = alpha
    -153        self.row_sample = row_sample
    -154        self.col_sample = col_sample
    -155        self.dropout = dropout
    -156        self.tolerance = tolerance
    -157        self.direct_link = direct_link
    -158        self.verbose = verbose
    -159        self.seed = seed
    -160        self.backend = backend
    -161        self.obj = None
    -162        self.solver = solver
    -163        self.activation = activation
    -164        self.type_pi = type_pi
    -165        self.replications = replications
    -166        self.kernel = kernel
    -167        self.n_clusters = n_clusters
    -168        self.clustering_method = clustering_method
    -169        self.cluster_scaling = cluster_scaling
    -170        self.scaler_, self.label_encoder_, self.clusterer_ = None, None, None
    -171        self.degree = degree
    -172        self.poly_ = None
    -173
    -174    def fit(self, X, y, **kwargs):
    -175        """Fit Booster (regressor) to training data (X, y)
    -176
    -177        Args:
    -178
    -179            X: {array-like}, shape = [n_samples, n_features]
    -180                Training vectors, where n_samples is the number
    -181                of samples and n_features is the number of features.
    -182
    -183            y: array-like, shape = [n_samples]
    -184               Target values.
    -185
    -186            **kwargs: additional parameters to be passed to self.cook_training_set.
    -187
    -188        Returns:
    -189
    -190            self: object.
    -191        """
    + 52        direct_link: bool
    + 53            indicates whether the original features are included (True) in model's
    + 54            fitting or not (False).
    + 55
    + 56        verbose: int
    + 57            progress bar (yes = 1) or not (no = 0) (currently).
    + 58
    + 59        seed: int
    + 60            reproducibility seed for nodes_sim=='uniform', clustering and dropout.
    + 61
    + 62        backend: str
    + 63            type of backend; must be in ('cpu', 'gpu', 'tpu')
    + 64
    + 65        solver: str
    + 66            type of 'weak' learner; currently in ('ridge', 'lasso')
    + 67
    + 68        activation: str
    + 69            activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'
    + 70
    + 71        type_pi: str.
    + 72            type of prediction interval; currently "kde" (default) or "bootstrap".
    + 73            Used only in `self.predict`, for `self.replications` > 0 and `self.kernel`
    + 74            in ('gaussian', 'tophat'). Default is `None`.
    + 75
    + 76        replications: int.
    + 77            number of replications (if needed) for predictive simulation.
    + 78            Used only in `self.predict`, for `self.kernel` in ('gaussian',
    + 79            'tophat') and `self.type_pi = 'kde'`. Default is `None`.
    + 80
    + 81        n_clusters: int
    + 82            number of clusters for clustering the features
    + 83
    + 84        clustering_method: str
    + 85            clustering method: currently 'kmeans', 'gmm'
    + 86
    + 87        cluster_scaling: str
    + 88            scaling method for clustering: currently 'standard', 'robust', 'minmax'
    + 89
    + 90        degree: int
    + 91            degree of features interactions to include in the model
    + 92
    + 93        weights_distr: str
    + 94            distribution of weights for constructing the model's hidden layer;
    + 95            either 'uniform' or 'gaussian'
    + 96
    + 97    """
    + 98
    + 99    def __init__(
    +100        self,
    +101        n_estimators=100,
    +102        learning_rate=0.1,
    +103        n_hidden_features=5,
    +104        reg_lambda=0.1,
    +105        alpha=0.5,
    +106        row_sample=1,
    +107        col_sample=1,
    +108        dropout=0,
    +109        tolerance=1e-4,
    +110        direct_link=1,
    +111        verbose=1,
    +112        seed=123,
    +113        backend="cpu",
    +114        solver="ridge",
    +115        activation="relu",
    +116        type_pi=None,
    +117        replications=None,
    +118        kernel=None,
    +119        n_clusters=0,
    +120        clustering_method="kmeans",
    +121        cluster_scaling="standard",
    +122        degree=0,
    +123        weights_distr="uniform",
    +124    ):
    +125        if n_clusters > 0:
    +126            assert clustering_method in (
    +127                "kmeans",
    +128                "gmm",
    +129            ), "`clustering_method` must be in ('kmeans', 'gmm')"
    +130            assert cluster_scaling in (
    +131                "standard",
    +132                "robust",
    +133                "minmax",
    +134            ), "`cluster_scaling` must be in ('standard', 'robust', 'minmax')"
    +135
    +136        assert backend in (
    +137            "cpu",
    +138            "gpu",
    +139            "tpu",
    +140        ), "`backend` must be in ('cpu', 'gpu', 'tpu')"
    +141
    +142        assert solver in (
    +143            "ridge",
    +144            "lasso",
    +145            "enet",
    +146        ), "`solver` must be in ('ridge', 'lasso', 'enet')"
    +147
    +148        sys_platform = platform.system()
    +149
    +150        if (sys_platform == "Windows") and (backend in ("gpu", "tpu")):
    +151            warnings.warn(
    +152                "No GPU/TPU computing on Windows yet, backend set to 'cpu'"
    +153            )
    +154            backend = "cpu"
    +155
    +156        self.n_estimators = n_estimators
    +157        self.learning_rate = learning_rate
    +158        self.n_hidden_features = n_hidden_features
    +159        self.reg_lambda = reg_lambda
    +160        assert alpha >= 0 and alpha <= 1, "`alpha` must be in [0, 1]"
    +161        self.alpha = alpha
    +162        self.row_sample = row_sample
    +163        self.col_sample = col_sample
    +164        self.dropout = dropout
    +165        self.tolerance = tolerance
    +166        self.direct_link = direct_link
    +167        self.verbose = verbose
    +168        self.seed = seed
    +169        self.backend = backend
    +170        self.obj = None
    +171        self.solver = solver
    +172        self.activation = activation
    +173        self.type_pi = type_pi
    +174        self.replications = replications
    +175        self.kernel = kernel
    +176        self.n_clusters = n_clusters
    +177        self.clustering_method = clustering_method
    +178        self.cluster_scaling = cluster_scaling
    +179        self.scaler_, self.label_encoder_, self.clusterer_ = None, None, None
    +180        self.degree = degree
    +181        self.poly_ = None
    +182        self.weights_distr = weights_distr
    +183
    +184    def fit(self, X, y, **kwargs):
    +185        """Fit Booster (regressor) to training data (X, y)
    +186
    +187        Args:
    +188
    +189            X: {array-like}, shape = [n_samples, n_features]
    +190                Training vectors, where n_samples is the number
    +191                of samples and n_features is the number of features.
     192
    -193        if isinstance(X, pd.DataFrame):
    -194            X = X.values
    +193            y: array-like, shape = [n_samples]
    +194               Target values.
     195
    -196        if self.degree > 1:
    -197            self.poly_ = PolynomialFeatures(
    -198                degree=self.degree, interaction_only=True, include_bias=False
    -199            )
    -200            X = self.poly_.fit_transform(X)
    -201
    -202        if self.n_clusters > 0:
    -203            clustered_X, self.scaler_, self.label_encoder_, self.clusterer_ = (
    -204                cluster(
    -205                    X,
    -206                    n_clusters=self.n_clusters,
    -207                    method=self.clustering_method,
    -208                    type_scaling=self.cluster_scaling,
    -209                    training=True,
    -210                    seed=self.seed,
    -211                )
    -212            )
    -213            X = np.column_stack((X, clustered_X))
    -214
    -215        try:
    -216            self.obj = boosterc.fit_booster_regressor(
    -217                X=np.asarray(X, order="C"),
    -218                y=np.asarray(y, order="C"),
    -219                n_estimators=self.n_estimators,
    -220                learning_rate=self.learning_rate,
    -221                n_hidden_features=self.n_hidden_features,
    -222                reg_lambda=self.reg_lambda,
    -223                alpha=self.alpha,
    -224                row_sample=self.row_sample,
    -225                col_sample=self.col_sample,
    -226                dropout=self.dropout,
    -227                tolerance=self.tolerance,
    -228                direct_link=self.direct_link,
    -229                verbose=self.verbose,
    -230                seed=self.seed,
    -231                backend=self.backend,
    -232                solver=self.solver,
    -233                activation=self.activation,
    -234            )
    -235        except ValueError:
    -236            self.obj = _boosterc.fit_booster_regressor(
    -237                X=np.asarray(X, order="C"),
    -238                y=np.asarray(y, order="C"),
    -239                n_estimators=self.n_estimators,
    -240                learning_rate=self.learning_rate,
    -241                n_hidden_features=self.n_hidden_features,
    -242                reg_lambda=self.reg_lambda,
    -243                alpha=self.alpha,
    -244                row_sample=self.row_sample,
    -245                col_sample=self.col_sample,
    -246                dropout=self.dropout,
    -247                tolerance=self.tolerance,
    -248                direct_link=self.direct_link,
    -249                verbose=self.verbose,
    -250                seed=self.seed,
    -251                backend=self.backend,
    -252                solver=self.solver,
    -253                activation=self.activation,
    -254            )
    -255
    -256        self.n_estimators = self.obj["n_estimators"]
    -257
    -258        self.X_ = X
    -259
    -260        self.y_ = y
    -261
    -262        return self
    -263
    -264    def predict(self, X, level=95, method=None, **kwargs):
    -265        """Predict probabilities for test data X.
    -266
    -267        Args:
    -268
    -269            X: {array-like}, shape = [n_samples, n_features]
    -270                Training vectors, where n_samples is the number
    -271                of samples and n_features is the number of features.
    -272
    -273            level: int
    -274                Level of confidence (default = 95)
    -275
    -276            method: str
    -277                `None`, or 'splitconformal', 'localconformal'
    -278                prediction (if you specify `return_pi = True`)
    -279
    -280            **kwargs: additional parameters to be passed to
    -281                self.cook_test_set
    +196            **kwargs: additional parameters to be passed to self.cook_training_set.
    +197
    +198        Returns:
    +199
    +200            self: object.
    +201        """
    +202
    +203        if isinstance(X, pd.DataFrame):
    +204            X = X.values
    +205
    +206        if self.degree > 1:
    +207            self.poly_ = PolynomialFeatures(
    +208                degree=self.degree, interaction_only=True, include_bias=False
    +209            )
    +210            X = self.poly_.fit_transform(X)
    +211
    +212        if self.n_clusters > 0:
    +213            clustered_X, self.scaler_, self.label_encoder_, self.clusterer_ = (
    +214                cluster(
    +215                    X,
    +216                    n_clusters=self.n_clusters,
    +217                    method=self.clustering_method,
    +218                    type_scaling=self.cluster_scaling,
    +219                    training=True,
    +220                    seed=self.seed,
    +221                )
    +222            )
    +223            X = np.column_stack((X, clustered_X))
    +224
    +225        try:
    +226            self.obj = boosterc.fit_booster_regressor(
    +227                X=np.asarray(X, order="C"),
    +228                y=np.asarray(y, order="C"),
    +229                n_estimators=self.n_estimators,
    +230                learning_rate=self.learning_rate,
    +231                n_hidden_features=self.n_hidden_features,
    +232                reg_lambda=self.reg_lambda,
    +233                alpha=self.alpha,
    +234                row_sample=self.row_sample,
    +235                col_sample=self.col_sample,
    +236                dropout=self.dropout,
    +237                tolerance=self.tolerance,
    +238                direct_link=self.direct_link,
    +239                verbose=self.verbose,
    +240                seed=self.seed,
    +241                backend=self.backend,
    +242                solver=self.solver,
    +243                activation=self.activation,
    +244            )
    +245        except ValueError:
    +246            self.obj = _boosterc.fit_booster_regressor(
    +247                X=np.asarray(X, order="C"),
    +248                y=np.asarray(y, order="C"),
    +249                n_estimators=self.n_estimators,
    +250                learning_rate=self.learning_rate,
    +251                n_hidden_features=self.n_hidden_features,
    +252                reg_lambda=self.reg_lambda,
    +253                alpha=self.alpha,
    +254                row_sample=self.row_sample,
    +255                col_sample=self.col_sample,
    +256                dropout=self.dropout,
    +257                tolerance=self.tolerance,
    +258                direct_link=self.direct_link,
    +259                verbose=self.verbose,
    +260                seed=self.seed,
    +261                backend=self.backend,
    +262                solver=self.solver,
    +263                activation=self.activation,
    +264            )
    +265
    +266        self.n_estimators = self.obj["n_estimators"]
    +267
    +268        self.X_ = X
    +269
    +270        self.y_ = y
    +271
    +272        return self
    +273
    +274    def predict(self, X, level=95, method=None, **kwargs):
    +275        """Predict probabilities for test data X.
    +276
    +277        Args:
    +278
    +279            X: {array-like}, shape = [n_samples, n_features]
    +280                Training vectors, where n_samples is the number
    +281                of samples and n_features is the number of features.
     282
    -283        Returns:
    -284
    -285            probability estimates for test data: {array-like}
    -286        """
    -287
    -288        if isinstance(X, pd.DataFrame):
    -289            X = X.values
    -290
    -291        if self.degree > 0:
    -292            X = self.poly_.transform(X)
    -293
    -294        if self.n_clusters > 0:
    -295            X = np.column_stack(
    -296                (
    -297                    X,
    -298                    cluster(
    -299                        X,
    -300                        training=False,
    -301                        scaler=self.scaler_,
    -302                        label_encoder=self.label_encoder_,
    -303                        clusterer=self.clusterer_,
    -304                        seed=self.seed,
    -305                    ),
    -306                )
    -307            )
    -308        if "return_pi" in kwargs:
    -309            assert method in (
    -310                "splitconformal",
    -311                "localconformal",
    -312            ), "method must be in ('splitconformal', 'localconformal')"
    -313            self.pi = PredictionInterval(
    -314                obj=self,
    -315                method=method,
    -316                level=level,
    -317                type_pi=self.type_pi,
    -318                replications=self.replications,
    -319                kernel=self.kernel,
    -320            )
    -321            self.pi.fit(self.X_, self.y_)
    -322            self.X_ = None
    -323            self.y_ = None
    -324            preds = self.pi.predict(X, return_pi=True)
    -325            return preds
    -326
    -327        try:
    -328            return boosterc.predict_booster_regressor(
    -329                self.obj, np.asarray(X, order="C")
    +283            level: int
    +284                Level of confidence (default = 95)
    +285
    +286            method: str
    +287                `None`, or 'splitconformal', 'localconformal'
    +288                prediction (if you specify `return_pi = True`)
    +289
    +290            **kwargs: additional parameters to be passed to
    +291                self.cook_test_set
    +292
    +293        Returns:
    +294
    +295            probability estimates for test data: {array-like}
    +296        """
    +297
    +298        if isinstance(X, pd.DataFrame):
    +299            X = X.values
    +300
    +301        if self.degree > 0:
    +302            X = self.poly_.transform(X)
    +303
    +304        if self.n_clusters > 0:
    +305            X = np.column_stack(
    +306                (
    +307                    X,
    +308                    cluster(
    +309                        X,
    +310                        training=False,
    +311                        scaler=self.scaler_,
    +312                        label_encoder=self.label_encoder_,
    +313                        clusterer=self.clusterer_,
    +314                        seed=self.seed,
    +315                    ),
    +316                )
    +317            )
    +318        if "return_pi" in kwargs:
    +319            assert method in (
    +320                "splitconformal",
    +321                "localconformal",
    +322            ), "method must be in ('splitconformal', 'localconformal')"
    +323            self.pi = PredictionInterval(
    +324                obj=self,
    +325                method=method,
    +326                level=level,
    +327                type_pi=self.type_pi,
    +328                replications=self.replications,
    +329                kernel=self.kernel,
     330            )
    -331        except ValueError:
    -332            return _boosterc.predict_booster_regressor(
    -333                self.obj, np.asarray(X, order="C")
    -334            )
    +331            self.pi.fit(self.X_, self.y_)
    +332            self.X_ = None
    +333            self.y_ = None
    +334            preds = self.pi.predict(X, return_pi=True)
    +335            return preds
    +336
    +337        try:
    +338            return boosterc.predict_booster_regressor(
    +339                self.obj, np.asarray(X, order="C")
    +340            )
    +341        except ValueError:
    +342            return _boosterc.predict_booster_regressor(
    +343                self.obj, np.asarray(X, order="C")
    +344            )
     
    @@ -1223,6 +1243,10 @@

    degree: int degree of features interactions to include in the model + +weights_distr: str + distribution of weights for constructing the model's hidden layer; + either 'uniform' or 'gaussian'

    @@ -1238,95 +1262,95 @@

    -
    174    def fit(self, X, y, **kwargs):
    -175        """Fit Booster (regressor) to training data (X, y)
    -176
    -177        Args:
    -178
    -179            X: {array-like}, shape = [n_samples, n_features]
    -180                Training vectors, where n_samples is the number
    -181                of samples and n_features is the number of features.
    -182
    -183            y: array-like, shape = [n_samples]
    -184               Target values.
    -185
    -186            **kwargs: additional parameters to be passed to self.cook_training_set.
    -187
    -188        Returns:
    -189
    -190            self: object.
    -191        """
    +            
    184    def fit(self, X, y, **kwargs):
    +185        """Fit Booster (regressor) to training data (X, y)
    +186
    +187        Args:
    +188
    +189            X: {array-like}, shape = [n_samples, n_features]
    +190                Training vectors, where n_samples is the number
    +191                of samples and n_features is the number of features.
     192
    -193        if isinstance(X, pd.DataFrame):
    -194            X = X.values
    +193            y: array-like, shape = [n_samples]
    +194               Target values.
     195
    -196        if self.degree > 1:
    -197            self.poly_ = PolynomialFeatures(
    -198                degree=self.degree, interaction_only=True, include_bias=False
    -199            )
    -200            X = self.poly_.fit_transform(X)
    -201
    -202        if self.n_clusters > 0:
    -203            clustered_X, self.scaler_, self.label_encoder_, self.clusterer_ = (
    -204                cluster(
    -205                    X,
    -206                    n_clusters=self.n_clusters,
    -207                    method=self.clustering_method,
    -208                    type_scaling=self.cluster_scaling,
    -209                    training=True,
    -210                    seed=self.seed,
    -211                )
    -212            )
    -213            X = np.column_stack((X, clustered_X))
    -214
    -215        try:
    -216            self.obj = boosterc.fit_booster_regressor(
    -217                X=np.asarray(X, order="C"),
    -218                y=np.asarray(y, order="C"),
    -219                n_estimators=self.n_estimators,
    -220                learning_rate=self.learning_rate,
    -221                n_hidden_features=self.n_hidden_features,
    -222                reg_lambda=self.reg_lambda,
    -223                alpha=self.alpha,
    -224                row_sample=self.row_sample,
    -225                col_sample=self.col_sample,
    -226                dropout=self.dropout,
    -227                tolerance=self.tolerance,
    -228                direct_link=self.direct_link,
    -229                verbose=self.verbose,
    -230                seed=self.seed,
    -231                backend=self.backend,
    -232                solver=self.solver,
    -233                activation=self.activation,
    -234            )
    -235        except ValueError:
    -236            self.obj = _boosterc.fit_booster_regressor(
    -237                X=np.asarray(X, order="C"),
    -238                y=np.asarray(y, order="C"),
    -239                n_estimators=self.n_estimators,
    -240                learning_rate=self.learning_rate,
    -241                n_hidden_features=self.n_hidden_features,
    -242                reg_lambda=self.reg_lambda,
    -243                alpha=self.alpha,
    -244                row_sample=self.row_sample,
    -245                col_sample=self.col_sample,
    -246                dropout=self.dropout,
    -247                tolerance=self.tolerance,
    -248                direct_link=self.direct_link,
    -249                verbose=self.verbose,
    -250                seed=self.seed,
    -251                backend=self.backend,
    -252                solver=self.solver,
    -253                activation=self.activation,
    -254            )
    -255
    -256        self.n_estimators = self.obj["n_estimators"]
    -257
    -258        self.X_ = X
    -259
    -260        self.y_ = y
    -261
    -262        return self
    +196            **kwargs: additional parameters to be passed to self.cook_training_set.
    +197
    +198        Returns:
    +199
    +200            self: object.
    +201        """
    +202
    +203        if isinstance(X, pd.DataFrame):
    +204            X = X.values
    +205
    +206        if self.degree > 1:
    +207            self.poly_ = PolynomialFeatures(
    +208                degree=self.degree, interaction_only=True, include_bias=False
    +209            )
    +210            X = self.poly_.fit_transform(X)
    +211
    +212        if self.n_clusters > 0:
    +213            clustered_X, self.scaler_, self.label_encoder_, self.clusterer_ = (
    +214                cluster(
    +215                    X,
    +216                    n_clusters=self.n_clusters,
    +217                    method=self.clustering_method,
    +218                    type_scaling=self.cluster_scaling,
    +219                    training=True,
    +220                    seed=self.seed,
    +221                )
    +222            )
    +223            X = np.column_stack((X, clustered_X))
    +224
    +225        try:
    +226            self.obj = boosterc.fit_booster_regressor(
    +227                X=np.asarray(X, order="C"),
    +228                y=np.asarray(y, order="C"),
    +229                n_estimators=self.n_estimators,
    +230                learning_rate=self.learning_rate,
    +231                n_hidden_features=self.n_hidden_features,
    +232                reg_lambda=self.reg_lambda,
    +233                alpha=self.alpha,
    +234                row_sample=self.row_sample,
    +235                col_sample=self.col_sample,
    +236                dropout=self.dropout,
    +237                tolerance=self.tolerance,
    +238                direct_link=self.direct_link,
    +239                verbose=self.verbose,
    +240                seed=self.seed,
    +241                backend=self.backend,
    +242                solver=self.solver,
    +243                activation=self.activation,
    +244            )
    +245        except ValueError:
    +246            self.obj = _boosterc.fit_booster_regressor(
    +247                X=np.asarray(X, order="C"),
    +248                y=np.asarray(y, order="C"),
    +249                n_estimators=self.n_estimators,
    +250                learning_rate=self.learning_rate,
    +251                n_hidden_features=self.n_hidden_features,
    +252                reg_lambda=self.reg_lambda,
    +253                alpha=self.alpha,
    +254                row_sample=self.row_sample,
    +255                col_sample=self.col_sample,
    +256                dropout=self.dropout,
    +257                tolerance=self.tolerance,
    +258                direct_link=self.direct_link,
    +259                verbose=self.verbose,
    +260                seed=self.seed,
    +261                backend=self.backend,
    +262                solver=self.solver,
    +263                activation=self.activation,
    +264            )
    +265
    +266        self.n_estimators = self.obj["n_estimators"]
    +267
    +268        self.X_ = X
    +269
    +270        self.y_ = y
    +271
    +272        return self
     
    @@ -1363,77 +1387,77 @@

    -
    264    def predict(self, X, level=95, method=None, **kwargs):
    -265        """Predict probabilities for test data X.
    -266
    -267        Args:
    -268
    -269            X: {array-like}, shape = [n_samples, n_features]
    -270                Training vectors, where n_samples is the number
    -271                of samples and n_features is the number of features.
    -272
    -273            level: int
    -274                Level of confidence (default = 95)
    -275
    -276            method: str
    -277                `None`, or 'splitconformal', 'localconformal'
    -278                prediction (if you specify `return_pi = True`)
    -279
    -280            **kwargs: additional parameters to be passed to
    -281                self.cook_test_set
    +            
    274    def predict(self, X, level=95, method=None, **kwargs):
    +275        """Predict probabilities for test data X.
    +276
    +277        Args:
    +278
    +279            X: {array-like}, shape = [n_samples, n_features]
    +280                Training vectors, where n_samples is the number
    +281                of samples and n_features is the number of features.
     282
    -283        Returns:
    -284
    -285            probability estimates for test data: {array-like}
    -286        """
    -287
    -288        if isinstance(X, pd.DataFrame):
    -289            X = X.values
    -290
    -291        if self.degree > 0:
    -292            X = self.poly_.transform(X)
    -293
    -294        if self.n_clusters > 0:
    -295            X = np.column_stack(
    -296                (
    -297                    X,
    -298                    cluster(
    -299                        X,
    -300                        training=False,
    -301                        scaler=self.scaler_,
    -302                        label_encoder=self.label_encoder_,
    -303                        clusterer=self.clusterer_,
    -304                        seed=self.seed,
    -305                    ),
    -306                )
    -307            )
    -308        if "return_pi" in kwargs:
    -309            assert method in (
    -310                "splitconformal",
    -311                "localconformal",
    -312            ), "method must be in ('splitconformal', 'localconformal')"
    -313            self.pi = PredictionInterval(
    -314                obj=self,
    -315                method=method,
    -316                level=level,
    -317                type_pi=self.type_pi,
    -318                replications=self.replications,
    -319                kernel=self.kernel,
    -320            )
    -321            self.pi.fit(self.X_, self.y_)
    -322            self.X_ = None
    -323            self.y_ = None
    -324            preds = self.pi.predict(X, return_pi=True)
    -325            return preds
    -326
    -327        try:
    -328            return boosterc.predict_booster_regressor(
    -329                self.obj, np.asarray(X, order="C")
    +283            level: int
    +284                Level of confidence (default = 95)
    +285
    +286            method: str
    +287                `None`, or 'splitconformal', 'localconformal'
    +288                prediction (if you specify `return_pi = True`)
    +289
    +290            **kwargs: additional parameters to be passed to
    +291                self.cook_test_set
    +292
    +293        Returns:
    +294
    +295            probability estimates for test data: {array-like}
    +296        """
    +297
    +298        if isinstance(X, pd.DataFrame):
    +299            X = X.values
    +300
    +301        if self.degree > 0:
    +302            X = self.poly_.transform(X)
    +303
    +304        if self.n_clusters > 0:
    +305            X = np.column_stack(
    +306                (
    +307                    X,
    +308                    cluster(
    +309                        X,
    +310                        training=False,
    +311                        scaler=self.scaler_,
    +312                        label_encoder=self.label_encoder_,
    +313                        clusterer=self.clusterer_,
    +314                        seed=self.seed,
    +315                    ),
    +316                )
    +317            )
    +318        if "return_pi" in kwargs:
    +319            assert method in (
    +320                "splitconformal",
    +321                "localconformal",
    +322            ), "method must be in ('splitconformal', 'localconformal')"
    +323            self.pi = PredictionInterval(
    +324                obj=self,
    +325                method=method,
    +326                level=level,
    +327                type_pi=self.type_pi,
    +328                replications=self.replications,
    +329                kernel=self.kernel,
     330            )
    -331        except ValueError:
    -332            return _boosterc.predict_booster_regressor(
    -333                self.obj, np.asarray(X, order="C")
    -334            )
    +331            self.pi.fit(self.X_, self.y_)
    +332            self.X_ = None
    +333            self.y_ = None
    +334            preds = self.pi.predict(X, return_pi=True)
    +335            return preds
    +336
    +337        try:
    +338            return boosterc.predict_booster_regressor(
    +339                self.obj, np.asarray(X, order="C")
    +340            )
    +341        except ValueError:
    +342            return _boosterc.predict_booster_regressor(
    +343                self.obj, np.asarray(X, order="C")
    +344            )
     
    diff --git a/mlsauce-docs/search.js b/mlsauce-docs/search.js index 1ce57c4..ab3cd2b 100644 --- a/mlsauce-docs/search.js +++ b/mlsauce-docs/search.js @@ -1,6 +1,6 @@ window.pdocSearch = (function(){ /** elasticlunr - http://weixsong.github.io * Copyright (C) 2017 Oliver Nightingale * Copyright (C) 2017 Wei Song * MIT Licensed */!function(){function e(e){if(null===e||"object"!=typeof e)return e;var t=e.constructor();for(var n in e)e.hasOwnProperty(n)&&(t[n]=e[n]);return t}var t=function(e){var n=new t.Index;return n.pipeline.add(t.trimmer,t.stopWordFilter,t.stemmer),e&&e.call(n,n),n};t.version="0.9.5",lunr=t,t.utils={},t.utils.warn=function(e){return function(t){e.console&&console.warn&&console.warn(t)}}(this),t.utils.toString=function(e){return void 0===e||null===e?"":e.toString()},t.EventEmitter=function(){this.events={}},t.EventEmitter.prototype.addListener=function(){var e=Array.prototype.slice.call(arguments),t=e.pop(),n=e;if("function"!=typeof t)throw new TypeError("last argument must be a function");n.forEach(function(e){this.hasHandler(e)||(this.events[e]=[]),this.events[e].push(t)},this)},t.EventEmitter.prototype.removeListener=function(e,t){if(this.hasHandler(e)){var n=this.events[e].indexOf(t);-1!==n&&(this.events[e].splice(n,1),0==this.events[e].length&&delete this.events[e])}},t.EventEmitter.prototype.emit=function(e){if(this.hasHandler(e)){var t=Array.prototype.slice.call(arguments,1);this.events[e].forEach(function(e){e.apply(void 0,t)},this)}},t.EventEmitter.prototype.hasHandler=function(e){return e in this.events},t.tokenizer=function(e){if(!arguments.length||null===e||void 0===e)return[];if(Array.isArray(e)){var n=e.filter(function(e){return null===e||void 0===e?!1:!0});n=n.map(function(e){return t.utils.toString(e).toLowerCase()});var i=[];return n.forEach(function(e){var n=e.split(t.tokenizer.seperator);i=i.concat(n)},this),i}return e.toString().trim().toLowerCase().split(t.tokenizer.seperator)},t.tokenizer.defaultSeperator=/[\s\-]+/,t.tokenizer.seperator=t.tokenizer.defaultSeperator,t.tokenizer.setSeperator=function(e){null!==e&&void 0!==e&&"object"==typeof e&&(t.tokenizer.seperator=e)},t.tokenizer.resetSeperator=function(){t.tokenizer.seperator=t.tokenizer.defaultSeperator},t.tokenizer.getSeperator=function(){return t.tokenizer.seperator},t.Pipeline=function(){this._queue=[]},t.Pipeline.registeredFunctions={},t.Pipeline.registerFunction=function(e,n){n in t.Pipeline.registeredFunctions&&t.utils.warn("Overwriting existing registered function: "+n),e.label=n,t.Pipeline.registeredFunctions[n]=e},t.Pipeline.getRegisteredFunction=function(e){return e in t.Pipeline.registeredFunctions!=!0?null:t.Pipeline.registeredFunctions[e]},t.Pipeline.warnIfFunctionNotRegistered=function(e){var n=e.label&&e.label in this.registeredFunctions;n||t.utils.warn("Function is not registered with pipeline. This may cause problems when serialising the index.\n",e)},t.Pipeline.load=function(e){var n=new t.Pipeline;return e.forEach(function(e){var i=t.Pipeline.getRegisteredFunction(e);if(!i)throw new Error("Cannot load un-registered function: "+e);n.add(i)}),n},t.Pipeline.prototype.add=function(){var e=Array.prototype.slice.call(arguments);e.forEach(function(e){t.Pipeline.warnIfFunctionNotRegistered(e),this._queue.push(e)},this)},t.Pipeline.prototype.after=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i+1,0,n)},t.Pipeline.prototype.before=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i,0,n)},t.Pipeline.prototype.remove=function(e){var t=this._queue.indexOf(e);-1!==t&&this._queue.splice(t,1)},t.Pipeline.prototype.run=function(e){for(var t=[],n=e.length,i=this._queue.length,o=0;n>o;o++){for(var r=e[o],s=0;i>s&&(r=this._queue[s](r,o,e),void 0!==r&&null!==r);s++);void 0!==r&&null!==r&&t.push(r)}return t},t.Pipeline.prototype.reset=function(){this._queue=[]},t.Pipeline.prototype.get=function(){return this._queue},t.Pipeline.prototype.toJSON=function(){return this._queue.map(function(e){return t.Pipeline.warnIfFunctionNotRegistered(e),e.label})},t.Index=function(){this._fields=[],this._ref="id",this.pipeline=new t.Pipeline,this.documentStore=new t.DocumentStore,this.index={},this.eventEmitter=new t.EventEmitter,this._idfCache={},this.on("add","remove","update",function(){this._idfCache={}}.bind(this))},t.Index.prototype.on=function(){var e=Array.prototype.slice.call(arguments);return this.eventEmitter.addListener.apply(this.eventEmitter,e)},t.Index.prototype.off=function(e,t){return this.eventEmitter.removeListener(e,t)},t.Index.load=function(e){e.version!==t.version&&t.utils.warn("version mismatch: current "+t.version+" importing "+e.version);var n=new this;n._fields=e.fields,n._ref=e.ref,n.documentStore=t.DocumentStore.load(e.documentStore),n.pipeline=t.Pipeline.load(e.pipeline),n.index={};for(var i in e.index)n.index[i]=t.InvertedIndex.load(e.index[i]);return n},t.Index.prototype.addField=function(e){return this._fields.push(e),this.index[e]=new t.InvertedIndex,this},t.Index.prototype.setRef=function(e){return this._ref=e,this},t.Index.prototype.saveDocument=function(e){return this.documentStore=new t.DocumentStore(e),this},t.Index.prototype.addDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.addDoc(i,e),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));this.documentStore.addFieldLength(i,n,o.length);var r={};o.forEach(function(e){e in r?r[e]+=1:r[e]=1},this);for(var s in r){var u=r[s];u=Math.sqrt(u),this.index[n].addToken(s,{ref:i,tf:u})}},this),n&&this.eventEmitter.emit("add",e,this)}},t.Index.prototype.removeDocByRef=function(e){if(e&&this.documentStore.isDocStored()!==!1&&this.documentStore.hasDoc(e)){var t=this.documentStore.getDoc(e);this.removeDoc(t,!1)}},t.Index.prototype.removeDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.hasDoc(i)&&(this.documentStore.removeDoc(i),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));o.forEach(function(e){this.index[n].removeToken(e,i)},this)},this),n&&this.eventEmitter.emit("remove",e,this))}},t.Index.prototype.updateDoc=function(e,t){var t=void 0===t?!0:t;this.removeDocByRef(e[this._ref],!1),this.addDoc(e,!1),t&&this.eventEmitter.emit("update",e,this)},t.Index.prototype.idf=function(e,t){var n="@"+t+"/"+e;if(Object.prototype.hasOwnProperty.call(this._idfCache,n))return this._idfCache[n];var i=this.index[t].getDocFreq(e),o=1+Math.log(this.documentStore.length/(i+1));return this._idfCache[n]=o,o},t.Index.prototype.getFields=function(){return this._fields.slice()},t.Index.prototype.search=function(e,n){if(!e)return[];e="string"==typeof e?{any:e}:JSON.parse(JSON.stringify(e));var i=null;null!=n&&(i=JSON.stringify(n));for(var o=new t.Configuration(i,this.getFields()).get(),r={},s=Object.keys(e),u=0;u0&&t.push(e);for(var i in n)"docs"!==i&&"df"!==i&&this.expandToken(e+i,t,n[i]);return t},t.InvertedIndex.prototype.toJSON=function(){return{root:this.root}},t.Configuration=function(e,n){var e=e||"";if(void 0==n||null==n)throw new Error("fields should not be null");this.config={};var i;try{i=JSON.parse(e),this.buildUserConfig(i,n)}catch(o){t.utils.warn("user configuration parse failed, will use default configuration"),this.buildDefaultConfig(n)}},t.Configuration.prototype.buildDefaultConfig=function(e){this.reset(),e.forEach(function(e){this.config[e]={boost:1,bool:"OR",expand:!1}},this)},t.Configuration.prototype.buildUserConfig=function(e,n){var i="OR",o=!1;if(this.reset(),"bool"in e&&(i=e.bool||i),"expand"in e&&(o=e.expand||o),"fields"in e)for(var r in e.fields)if(n.indexOf(r)>-1){var s=e.fields[r],u=o;void 0!=s.expand&&(u=s.expand),this.config[r]={boost:s.boost||0===s.boost?s.boost:1,bool:s.bool||i,expand:u}}else t.utils.warn("field name in user configuration not found in index instance fields");else this.addAllFields2UserConfig(i,o,n)},t.Configuration.prototype.addAllFields2UserConfig=function(e,t,n){n.forEach(function(n){this.config[n]={boost:1,bool:e,expand:t}},this)},t.Configuration.prototype.get=function(){return this.config},t.Configuration.prototype.reset=function(){this.config={}},lunr.SortedSet=function(){this.length=0,this.elements=[]},lunr.SortedSet.load=function(e){var t=new this;return t.elements=e,t.length=e.length,t},lunr.SortedSet.prototype.add=function(){var e,t;for(e=0;e1;){if(r===e)return o;e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o]}return r===e?o:-1},lunr.SortedSet.prototype.locationFor=function(e){for(var t=0,n=this.elements.length,i=n-t,o=t+Math.floor(i/2),r=this.elements[o];i>1;)e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o];return r>e?o:e>r?o+1:void 0},lunr.SortedSet.prototype.intersect=function(e){for(var t=new lunr.SortedSet,n=0,i=0,o=this.length,r=e.length,s=this.elements,u=e.elements;;){if(n>o-1||i>r-1)break;s[n]!==u[i]?s[n]u[i]&&i++:(t.add(s[n]),n++,i++)}return t},lunr.SortedSet.prototype.clone=function(){var e=new lunr.SortedSet;return e.elements=this.toArray(),e.length=e.elements.length,e},lunr.SortedSet.prototype.union=function(e){var t,n,i;this.length>=e.length?(t=this,n=e):(t=e,n=this),i=t.clone();for(var o=0,r=n.toArray();o

    \n"}, "mlsauce.AdaOpt": {"fullname": "mlsauce.AdaOpt", "modulename": "mlsauce", "qualname": "AdaOpt", "kind": "class", "doc": "

    AdaOpt classifier.

    \n\n

    Attributes:

    \n\n
    n_iterations: int\n    number of iterations of the optimizer at training time.\n\nlearning_rate: float\n    controls the speed of the optimizer at training time.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nreg_alpha: float\n    L1 regularization parameter for successive errors in the optimizer\n    (at training time).\n\neta: float\n    controls the slope in gradient descent (at training time).\n\ngamma: float\n    controls the step size in gradient descent (at training time).\n\nk: int\n    number of nearest neighbors selected at test time for classification.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\nn_clusters: int\n    number of clusters, if MiniBatch k-means is used at test time\n    (for faster prediction).\n\nbatch_size: int\n    size of the batch, if MiniBatch k-means is used at test time\n    (for faster prediction).\n\nrow_sample: float\n    percentage of rows chosen from training set (by stratified subsampling,\n    for faster prediction).\n\ntype_dist: str\n    distance used for finding the nearest neighbors; currently `euclidean-f`\n    (euclidean distances calculated as whole), `euclidean` (euclidean distances\n    calculated row by row), `cosine` (cosine distance).\n\nn_jobs: int\n    number of cpus for parallel processing (default: None)\n\nverbose: int\n    progress bar for parallel processing (yes = 1) or not (no = 0)\n\ncache: boolean\n    if the nearest neighbors are cached or not, for faster retrieval in\n    subsequent calls.\n\nn_clusters_input: int\n    number of clusters (a priori) for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin"}, "mlsauce.AdaOpt.__init__": {"fullname": "mlsauce.AdaOpt.__init__", "modulename": "mlsauce", "qualname": "AdaOpt.__init__", "kind": "function", "doc": "

    \n", "signature": "(\tn_iterations=50,\tlearning_rate=0.3,\treg_lambda=0.1,\treg_alpha=0.5,\teta=0.01,\tgamma=0.01,\tk=3,\ttolerance=0,\tn_clusters=0,\tbatch_size=100,\trow_sample=0.8,\ttype_dist='euclidean-f',\tn_jobs=None,\tverbose=0,\tcache=True,\tn_clusters_input=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tseed=123)"}, "mlsauce.AdaOpt.n_iterations": {"fullname": "mlsauce.AdaOpt.n_iterations", "modulename": "mlsauce", "qualname": "AdaOpt.n_iterations", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.learning_rate": {"fullname": "mlsauce.AdaOpt.learning_rate", "modulename": "mlsauce", "qualname": "AdaOpt.learning_rate", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.reg_lambda": {"fullname": "mlsauce.AdaOpt.reg_lambda", "modulename": "mlsauce", "qualname": "AdaOpt.reg_lambda", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.reg_alpha": {"fullname": "mlsauce.AdaOpt.reg_alpha", "modulename": "mlsauce", "qualname": "AdaOpt.reg_alpha", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.eta": {"fullname": "mlsauce.AdaOpt.eta", "modulename": "mlsauce", "qualname": "AdaOpt.eta", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.gamma": {"fullname": "mlsauce.AdaOpt.gamma", "modulename": "mlsauce", "qualname": "AdaOpt.gamma", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.k": {"fullname": "mlsauce.AdaOpt.k", "modulename": "mlsauce", "qualname": "AdaOpt.k", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.tolerance": {"fullname": "mlsauce.AdaOpt.tolerance", "modulename": "mlsauce", "qualname": "AdaOpt.tolerance", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.n_clusters": {"fullname": "mlsauce.AdaOpt.n_clusters", "modulename": "mlsauce", "qualname": "AdaOpt.n_clusters", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.batch_size": {"fullname": "mlsauce.AdaOpt.batch_size", "modulename": "mlsauce", "qualname": "AdaOpt.batch_size", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.row_sample": {"fullname": "mlsauce.AdaOpt.row_sample", "modulename": "mlsauce", "qualname": "AdaOpt.row_sample", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.type_dist": {"fullname": "mlsauce.AdaOpt.type_dist", "modulename": "mlsauce", "qualname": "AdaOpt.type_dist", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.n_jobs": {"fullname": "mlsauce.AdaOpt.n_jobs", "modulename": "mlsauce", "qualname": "AdaOpt.n_jobs", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.cache": {"fullname": "mlsauce.AdaOpt.cache", "modulename": "mlsauce", "qualname": "AdaOpt.cache", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.verbose": {"fullname": "mlsauce.AdaOpt.verbose", "modulename": "mlsauce", "qualname": "AdaOpt.verbose", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.n_clusters_input": {"fullname": "mlsauce.AdaOpt.n_clusters_input", "modulename": "mlsauce", "qualname": "AdaOpt.n_clusters_input", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.clustering_method": {"fullname": "mlsauce.AdaOpt.clustering_method", "modulename": "mlsauce", "qualname": "AdaOpt.clustering_method", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.cluster_scaling": {"fullname": "mlsauce.AdaOpt.cluster_scaling", "modulename": "mlsauce", "qualname": "AdaOpt.cluster_scaling", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.seed": {"fullname": "mlsauce.AdaOpt.seed", "modulename": "mlsauce", "qualname": "AdaOpt.seed", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.fit": {"fullname": "mlsauce.AdaOpt.fit", "modulename": "mlsauce", "qualname": "AdaOpt.fit", "kind": "function", "doc": "

    Fit AdaOpt to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.AdaOpt.predict": {"fullname": "mlsauce.AdaOpt.predict", "modulename": "mlsauce", "qualname": "AdaOpt.predict", "kind": "function", "doc": "

    Predict test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
    \n\n

    Returns:

    \n\n
    model predictions: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.AdaOpt.predict_proba": {"fullname": "mlsauce.AdaOpt.predict_proba", "modulename": "mlsauce", "qualname": "AdaOpt.predict_proba", "kind": "function", "doc": "

    Predict probabilities for test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
    \n\n

    Returns:

    \n\n
    probability estimates for test data: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.AdaOpt.set_score_request": {"fullname": "mlsauce.AdaOpt.set_score_request", "modulename": "mlsauce", "qualname": "AdaOpt.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.LSBoostClassifier": {"fullname": "mlsauce.LSBoostClassifier", "modulename": "mlsauce", "qualname": "LSBoostClassifier", "kind": "class", "doc": "

    LSBoost classifier.

    \n\n

    Attributes:

    \n\n
    n_estimators: int\n    number of boosting iterations.\n\nlearning_rate: float\n    controls the learning speed at training time.\n\nn_hidden_features: int\n    number of nodes in successive hidden layers.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'.\n\nrow_sample: float\n    percentage of rows chosen from the training set.\n\ncol_sample: float\n    percentage of columns chosen from the training set.\n\ndropout: float\n    percentage of nodes dropped from the training set.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\ndirect_link: bool\n    indicates whether the original features are included (True) in model's\n    fitting or not (False).\n\nverbose: int\n    progress bar (yes = 1) or not (no = 0) (currently).\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n\nsolver: str\n    type of 'weak' learner; currently in ('ridge', 'lasso', 'enet').\n    'enet' is a combination of 'ridge' and 'lasso' called Elastic Net.\n\nactivation: str\n    activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'\n\nn_clusters: int\n    number of clusters for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\ndegree: int\n    degree of features interactions to include in the model\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin"}, "mlsauce.LSBoostClassifier.__init__": {"fullname": "mlsauce.LSBoostClassifier.__init__", "modulename": "mlsauce", "qualname": "LSBoostClassifier.__init__", "kind": "function", "doc": "

    \n", "signature": "(\tn_estimators=100,\tlearning_rate=0.1,\tn_hidden_features=5,\treg_lambda=0.1,\talpha=0.5,\trow_sample=1,\tcol_sample=1,\tdropout=0,\ttolerance=0.0001,\tdirect_link=1,\tverbose=1,\tseed=123,\tbackend='cpu',\tsolver='ridge',\tactivation='relu',\tn_clusters=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tdegree=0)"}, "mlsauce.LSBoostClassifier.n_estimators": {"fullname": "mlsauce.LSBoostClassifier.n_estimators", "modulename": "mlsauce", "qualname": "LSBoostClassifier.n_estimators", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.learning_rate": {"fullname": "mlsauce.LSBoostClassifier.learning_rate", "modulename": "mlsauce", "qualname": "LSBoostClassifier.learning_rate", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.n_hidden_features": {"fullname": "mlsauce.LSBoostClassifier.n_hidden_features", "modulename": "mlsauce", "qualname": "LSBoostClassifier.n_hidden_features", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.reg_lambda": {"fullname": "mlsauce.LSBoostClassifier.reg_lambda", "modulename": "mlsauce", "qualname": "LSBoostClassifier.reg_lambda", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.alpha": {"fullname": "mlsauce.LSBoostClassifier.alpha", "modulename": "mlsauce", "qualname": "LSBoostClassifier.alpha", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.row_sample": {"fullname": "mlsauce.LSBoostClassifier.row_sample", "modulename": "mlsauce", "qualname": "LSBoostClassifier.row_sample", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.col_sample": {"fullname": "mlsauce.LSBoostClassifier.col_sample", "modulename": "mlsauce", "qualname": "LSBoostClassifier.col_sample", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.dropout": {"fullname": "mlsauce.LSBoostClassifier.dropout", "modulename": "mlsauce", "qualname": "LSBoostClassifier.dropout", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.tolerance": {"fullname": "mlsauce.LSBoostClassifier.tolerance", "modulename": "mlsauce", "qualname": "LSBoostClassifier.tolerance", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.direct_link": {"fullname": "mlsauce.LSBoostClassifier.direct_link", "modulename": "mlsauce", "qualname": "LSBoostClassifier.direct_link", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.verbose": {"fullname": "mlsauce.LSBoostClassifier.verbose", "modulename": "mlsauce", "qualname": "LSBoostClassifier.verbose", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.seed": {"fullname": "mlsauce.LSBoostClassifier.seed", "modulename": "mlsauce", "qualname": "LSBoostClassifier.seed", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.backend": {"fullname": "mlsauce.LSBoostClassifier.backend", "modulename": "mlsauce", "qualname": "LSBoostClassifier.backend", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.obj": {"fullname": "mlsauce.LSBoostClassifier.obj", "modulename": "mlsauce", "qualname": "LSBoostClassifier.obj", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.solver": {"fullname": "mlsauce.LSBoostClassifier.solver", "modulename": "mlsauce", "qualname": "LSBoostClassifier.solver", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.activation": {"fullname": "mlsauce.LSBoostClassifier.activation", "modulename": "mlsauce", "qualname": "LSBoostClassifier.activation", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.n_clusters": {"fullname": "mlsauce.LSBoostClassifier.n_clusters", "modulename": "mlsauce", "qualname": "LSBoostClassifier.n_clusters", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.clustering_method": {"fullname": "mlsauce.LSBoostClassifier.clustering_method", "modulename": "mlsauce", "qualname": "LSBoostClassifier.clustering_method", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.cluster_scaling": {"fullname": "mlsauce.LSBoostClassifier.cluster_scaling", "modulename": "mlsauce", "qualname": "LSBoostClassifier.cluster_scaling", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.degree": {"fullname": "mlsauce.LSBoostClassifier.degree", "modulename": "mlsauce", "qualname": "LSBoostClassifier.degree", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.poly_": {"fullname": "mlsauce.LSBoostClassifier.poly_", "modulename": "mlsauce", "qualname": "LSBoostClassifier.poly_", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.fit": {"fullname": "mlsauce.LSBoostClassifier.fit", "modulename": "mlsauce", "qualname": "LSBoostClassifier.fit", "kind": "function", "doc": "

    Fit Booster (classifier) to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.LSBoostClassifier.predict": {"fullname": "mlsauce.LSBoostClassifier.predict", "modulename": "mlsauce", "qualname": "LSBoostClassifier.predict", "kind": "function", "doc": "

    Predict test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
    \n\n

    Returns:

    \n\n
    model predictions: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.LSBoostClassifier.predict_proba": {"fullname": "mlsauce.LSBoostClassifier.predict_proba", "modulename": "mlsauce", "qualname": "LSBoostClassifier.predict_proba", "kind": "function", "doc": "

    Predict probabilities for test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
    \n\n

    Returns:

    \n\n
    probability estimates for test data: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.LSBoostClassifier.set_score_request": {"fullname": "mlsauce.LSBoostClassifier.set_score_request", "modulename": "mlsauce", "qualname": "LSBoostClassifier.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.StumpClassifier": {"fullname": "mlsauce.StumpClassifier", "modulename": "mlsauce", "qualname": "StumpClassifier", "kind": "class", "doc": "

    Stump classifier.

    \n\n

    Attributes:

    \n\n
    bins: int\n    Number of histogram bins; as in numpy.histogram.\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin"}, "mlsauce.StumpClassifier.__init__": {"fullname": "mlsauce.StumpClassifier.__init__", "modulename": "mlsauce", "qualname": "StumpClassifier.__init__", "kind": "function", "doc": "

    \n", "signature": "(bins='auto')"}, "mlsauce.StumpClassifier.bins": {"fullname": "mlsauce.StumpClassifier.bins", "modulename": "mlsauce", "qualname": "StumpClassifier.bins", "kind": "variable", "doc": "

    \n"}, "mlsauce.StumpClassifier.obj": {"fullname": "mlsauce.StumpClassifier.obj", "modulename": "mlsauce", "qualname": "StumpClassifier.obj", "kind": "variable", "doc": "

    \n"}, "mlsauce.StumpClassifier.fit": {"fullname": "mlsauce.StumpClassifier.fit", "modulename": "mlsauce", "qualname": "StumpClassifier.fit", "kind": "function", "doc": "

    Fit Stump to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\nsample_weight: array_like, shape = [n_samples]\n    Observations weights.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, sample_weight=None, **kwargs):", "funcdef": "def"}, "mlsauce.StumpClassifier.predict": {"fullname": "mlsauce.StumpClassifier.predict", "modulename": "mlsauce", "qualname": "StumpClassifier.predict", "kind": "function", "doc": "

    Predict test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
    \n\n

    Returns:

    \n\n
    model predictions: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.StumpClassifier.predict_proba": {"fullname": "mlsauce.StumpClassifier.predict_proba", "modulename": "mlsauce", "qualname": "StumpClassifier.predict_proba", "kind": "function", "doc": "

    Predict probabilities for test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
    \n\n

    Returns:

    \n\n
    probability estimates for test data: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.StumpClassifier.set_fit_request": {"fullname": "mlsauce.StumpClassifier.set_fit_request", "modulename": "mlsauce", "qualname": "StumpClassifier.set_fit_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.StumpClassifier.set_score_request": {"fullname": "mlsauce.StumpClassifier.set_score_request", "modulename": "mlsauce", "qualname": "StumpClassifier.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.ElasticNetRegressor": {"fullname": "mlsauce.ElasticNetRegressor", "modulename": "mlsauce", "qualname": "ElasticNetRegressor", "kind": "class", "doc": "

    Elasticnet.

    \n\n

    Attributes:

    \n\n
    reg_lambda: float\n    regularization parameter.\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.ElasticNetRegressor.__init__": {"fullname": "mlsauce.ElasticNetRegressor.__init__", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.__init__", "kind": "function", "doc": "

    \n", "signature": "(reg_lambda=0.1, alpha=0.5, backend='cpu')"}, "mlsauce.ElasticNetRegressor.reg_lambda": {"fullname": "mlsauce.ElasticNetRegressor.reg_lambda", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.reg_lambda", "kind": "variable", "doc": "

    \n"}, "mlsauce.ElasticNetRegressor.alpha": {"fullname": "mlsauce.ElasticNetRegressor.alpha", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.alpha", "kind": "variable", "doc": "

    \n"}, "mlsauce.ElasticNetRegressor.backend": {"fullname": "mlsauce.ElasticNetRegressor.backend", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.backend", "kind": "variable", "doc": "

    \n"}, "mlsauce.ElasticNetRegressor.fit": {"fullname": "mlsauce.ElasticNetRegressor.fit", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.fit", "kind": "function", "doc": "

    Fit matrixops (classifier) to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.ElasticNetRegressor.predict": {"fullname": "mlsauce.ElasticNetRegressor.predict", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.predict", "kind": "function", "doc": "

    Predict test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
    \n\n

    Returns:

    \n\n
    model predictions: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.ElasticNetRegressor.set_score_request": {"fullname": "mlsauce.ElasticNetRegressor.set_score_request", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.LassoRegressor": {"fullname": "mlsauce.LassoRegressor", "modulename": "mlsauce", "qualname": "LassoRegressor", "kind": "class", "doc": "

    Lasso.

    \n\n

    Attributes:

    \n\n
    reg_lambda: float\n    L1 regularization parameter.\n\nmax_iter: int\n    number of iterations of lasso shooting algorithm.\n\ntol: float\n    tolerance for convergence of lasso shooting algorithm.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu').\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.LassoRegressor.__init__": {"fullname": "mlsauce.LassoRegressor.__init__", "modulename": "mlsauce", "qualname": "LassoRegressor.__init__", "kind": "function", "doc": "

    \n", "signature": "(reg_lambda=0.1, max_iter=10, tol=0.001, backend='cpu')"}, "mlsauce.LassoRegressor.reg_lambda": {"fullname": "mlsauce.LassoRegressor.reg_lambda", "modulename": "mlsauce", "qualname": "LassoRegressor.reg_lambda", "kind": "variable", "doc": "

    \n"}, "mlsauce.LassoRegressor.max_iter": {"fullname": "mlsauce.LassoRegressor.max_iter", "modulename": "mlsauce", "qualname": "LassoRegressor.max_iter", "kind": "variable", "doc": "

    \n"}, "mlsauce.LassoRegressor.tol": {"fullname": "mlsauce.LassoRegressor.tol", "modulename": "mlsauce", "qualname": "LassoRegressor.tol", "kind": "variable", "doc": "

    \n"}, "mlsauce.LassoRegressor.backend": {"fullname": "mlsauce.LassoRegressor.backend", "modulename": "mlsauce", "qualname": "LassoRegressor.backend", "kind": "variable", "doc": "

    \n"}, "mlsauce.LassoRegressor.fit": {"fullname": "mlsauce.LassoRegressor.fit", "modulename": "mlsauce", "qualname": "LassoRegressor.fit", "kind": "function", "doc": "

    Fit matrixops (classifier) to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.LassoRegressor.predict": {"fullname": "mlsauce.LassoRegressor.predict", "modulename": "mlsauce", "qualname": "LassoRegressor.predict", "kind": "function", "doc": "

    Predict test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
    \n\n

    Returns:

    \n\n
    model predictions: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.LassoRegressor.set_score_request": {"fullname": "mlsauce.LassoRegressor.set_score_request", "modulename": "mlsauce", "qualname": "LassoRegressor.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.LSBoostRegressor": {"fullname": "mlsauce.LSBoostRegressor", "modulename": "mlsauce", "qualname": "LSBoostRegressor", "kind": "class", "doc": "

    LSBoost regressor.

    \n\n

    Attributes:

    \n\n
    n_estimators: int\n    number of boosting iterations.\n\nlearning_rate: float\n    controls the learning speed at training time.\n\nn_hidden_features: int\n    number of nodes in successive hidden layers.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'\n\nrow_sample: float\n    percentage of rows chosen from the training set.\n\ncol_sample: float\n    percentage of columns chosen from the training set.\n\ndropout: float\n    percentage of nodes dropped from the training set.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\ndirect_link: bool\n    indicates whether the original features are included (True) in model's\n    fitting or not (False).\n\nverbose: int\n    progress bar (yes = 1) or not (no = 0) (currently).\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n\nsolver: str\n    type of 'weak' learner; currently in ('ridge', 'lasso')\n\nactivation: str\n    activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'\n\ntype_pi: str.\n    type of prediction interval; currently \"kde\" (default) or \"bootstrap\".\n    Used only in `self.predict`, for `self.replications` > 0 and `self.kernel`\n    in ('gaussian', 'tophat'). Default is `None`.\n\nreplications: int.\n    number of replications (if needed) for predictive simulation.\n    Used only in `self.predict`, for `self.kernel` in ('gaussian',\n    'tophat') and `self.type_pi = 'kde'`. Default is `None`.\n\nn_clusters: int\n    number of clusters for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\ndegree: int\n    degree of features interactions to include in the model\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.LSBoostRegressor.__init__": {"fullname": "mlsauce.LSBoostRegressor.__init__", "modulename": "mlsauce", "qualname": "LSBoostRegressor.__init__", "kind": "function", "doc": "

    \n", "signature": "(\tn_estimators=100,\tlearning_rate=0.1,\tn_hidden_features=5,\treg_lambda=0.1,\talpha=0.5,\trow_sample=1,\tcol_sample=1,\tdropout=0,\ttolerance=0.0001,\tdirect_link=1,\tverbose=1,\tseed=123,\tbackend='cpu',\tsolver='ridge',\tactivation='relu',\ttype_pi=None,\treplications=None,\tkernel=None,\tn_clusters=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tdegree=0)"}, "mlsauce.LSBoostRegressor.n_estimators": {"fullname": "mlsauce.LSBoostRegressor.n_estimators", "modulename": "mlsauce", "qualname": "LSBoostRegressor.n_estimators", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.learning_rate": {"fullname": "mlsauce.LSBoostRegressor.learning_rate", "modulename": "mlsauce", "qualname": "LSBoostRegressor.learning_rate", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.n_hidden_features": {"fullname": "mlsauce.LSBoostRegressor.n_hidden_features", "modulename": "mlsauce", "qualname": "LSBoostRegressor.n_hidden_features", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.reg_lambda": {"fullname": "mlsauce.LSBoostRegressor.reg_lambda", "modulename": "mlsauce", "qualname": "LSBoostRegressor.reg_lambda", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.alpha": {"fullname": "mlsauce.LSBoostRegressor.alpha", "modulename": "mlsauce", "qualname": "LSBoostRegressor.alpha", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.row_sample": {"fullname": "mlsauce.LSBoostRegressor.row_sample", "modulename": "mlsauce", "qualname": "LSBoostRegressor.row_sample", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.col_sample": {"fullname": "mlsauce.LSBoostRegressor.col_sample", "modulename": "mlsauce", "qualname": "LSBoostRegressor.col_sample", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.dropout": {"fullname": "mlsauce.LSBoostRegressor.dropout", "modulename": "mlsauce", "qualname": "LSBoostRegressor.dropout", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.tolerance": {"fullname": "mlsauce.LSBoostRegressor.tolerance", "modulename": "mlsauce", "qualname": "LSBoostRegressor.tolerance", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.direct_link": {"fullname": "mlsauce.LSBoostRegressor.direct_link", "modulename": "mlsauce", "qualname": "LSBoostRegressor.direct_link", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.verbose": {"fullname": "mlsauce.LSBoostRegressor.verbose", "modulename": "mlsauce", "qualname": "LSBoostRegressor.verbose", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.seed": {"fullname": "mlsauce.LSBoostRegressor.seed", "modulename": "mlsauce", "qualname": "LSBoostRegressor.seed", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.backend": {"fullname": "mlsauce.LSBoostRegressor.backend", "modulename": "mlsauce", "qualname": "LSBoostRegressor.backend", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.obj": {"fullname": "mlsauce.LSBoostRegressor.obj", "modulename": "mlsauce", "qualname": "LSBoostRegressor.obj", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.solver": {"fullname": "mlsauce.LSBoostRegressor.solver", "modulename": "mlsauce", "qualname": "LSBoostRegressor.solver", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.activation": {"fullname": "mlsauce.LSBoostRegressor.activation", "modulename": "mlsauce", "qualname": "LSBoostRegressor.activation", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.type_pi": {"fullname": "mlsauce.LSBoostRegressor.type_pi", "modulename": "mlsauce", "qualname": "LSBoostRegressor.type_pi", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.replications": {"fullname": "mlsauce.LSBoostRegressor.replications", "modulename": "mlsauce", "qualname": "LSBoostRegressor.replications", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.kernel": {"fullname": "mlsauce.LSBoostRegressor.kernel", "modulename": "mlsauce", "qualname": "LSBoostRegressor.kernel", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.n_clusters": {"fullname": "mlsauce.LSBoostRegressor.n_clusters", "modulename": "mlsauce", "qualname": "LSBoostRegressor.n_clusters", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.clustering_method": {"fullname": "mlsauce.LSBoostRegressor.clustering_method", "modulename": "mlsauce", "qualname": "LSBoostRegressor.clustering_method", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.cluster_scaling": {"fullname": "mlsauce.LSBoostRegressor.cluster_scaling", "modulename": "mlsauce", "qualname": "LSBoostRegressor.cluster_scaling", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.degree": {"fullname": "mlsauce.LSBoostRegressor.degree", "modulename": "mlsauce", "qualname": "LSBoostRegressor.degree", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.poly_": {"fullname": "mlsauce.LSBoostRegressor.poly_", "modulename": "mlsauce", "qualname": "LSBoostRegressor.poly_", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.fit": {"fullname": "mlsauce.LSBoostRegressor.fit", "modulename": "mlsauce", "qualname": "LSBoostRegressor.fit", "kind": "function", "doc": "

    Fit Booster (regressor) to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n   Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.LSBoostRegressor.predict": {"fullname": "mlsauce.LSBoostRegressor.predict", "modulename": "mlsauce", "qualname": "LSBoostRegressor.predict", "kind": "function", "doc": "

    Predict probabilities for test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\nlevel: int\n    Level of confidence (default = 95)\n\nmethod: str\n    `None`, or 'splitconformal', 'localconformal'\n    prediction (if you specify `return_pi = True`)\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
    \n\n

    Returns:

    \n\n
    probability estimates for test data: {array-like}\n
    \n", "signature": "(self, X, level=95, method=None, **kwargs):", "funcdef": "def"}, "mlsauce.LSBoostRegressor.set_predict_request": {"fullname": "mlsauce.LSBoostRegressor.set_predict_request", "modulename": "mlsauce", "qualname": "LSBoostRegressor.set_predict_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.LSBoostRegressor.set_score_request": {"fullname": "mlsauce.LSBoostRegressor.set_score_request", "modulename": "mlsauce", "qualname": "LSBoostRegressor.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.RidgeRegressor": {"fullname": "mlsauce.RidgeRegressor", "modulename": "mlsauce", "qualname": "RidgeRegressor", "kind": "class", "doc": "

    Ridge.

    \n\n

    Attributes:

    \n\n
    reg_lambda: float\n    regularization parameter.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.RidgeRegressor.__init__": {"fullname": "mlsauce.RidgeRegressor.__init__", "modulename": "mlsauce", "qualname": "RidgeRegressor.__init__", "kind": "function", "doc": "

    \n", "signature": "(reg_lambda=0.1, backend='cpu')"}, "mlsauce.RidgeRegressor.reg_lambda": {"fullname": "mlsauce.RidgeRegressor.reg_lambda", "modulename": "mlsauce", "qualname": "RidgeRegressor.reg_lambda", "kind": "variable", "doc": "

    \n"}, "mlsauce.RidgeRegressor.backend": {"fullname": "mlsauce.RidgeRegressor.backend", "modulename": "mlsauce", "qualname": "RidgeRegressor.backend", "kind": "variable", "doc": "

    \n"}, "mlsauce.RidgeRegressor.fit": {"fullname": "mlsauce.RidgeRegressor.fit", "modulename": "mlsauce", "qualname": "RidgeRegressor.fit", "kind": "function", "doc": "

    Fit matrixops (classifier) to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.RidgeRegressor.predict": {"fullname": "mlsauce.RidgeRegressor.predict", "modulename": "mlsauce", "qualname": "RidgeRegressor.predict", "kind": "function", "doc": "

    Predict test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
    \n\n

    Returns:

    \n\n
    model predictions: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.RidgeRegressor.set_score_request": {"fullname": "mlsauce.RidgeRegressor.set_score_request", "modulename": "mlsauce", "qualname": "RidgeRegressor.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.download": {"fullname": "mlsauce.download", "modulename": "mlsauce", "qualname": "download", "kind": "function", "doc": "

    \n", "signature": "(\tpkgname='MASS',\tdataset='Boston',\tsource='https://cran.r-universe.dev/',\t**kwargs):", "funcdef": "def"}, "mlsauce.get_config": {"fullname": "mlsauce.get_config", "modulename": "mlsauce", "qualname": "get_config", "kind": "function", "doc": "

    Retrieve current values for configuration set by set_config()

    \n\n

    Returns

    \n\n

    config : dict\n Keys are parameter names that can be passed to set_config().

    \n\n

    See Also

    \n\n

    config_context: Context manager for global mlsauce configuration\nset_config: Set global mlsauce configuration

    \n", "signature": "():", "funcdef": "def"}, "mlsauce.set_config": {"fullname": "mlsauce.set_config", "modulename": "mlsauce", "qualname": "set_config", "kind": "function", "doc": "

    Set global mlsauce configuration

    \n\n

    New in version 0.3.0.

    \n\n

    Parameters

    \n\n

    assume_finite : bool, optional\n If True, validation for finiteness will be skipped,\n saving time, but leading to potential crashes. If\n False, validation for finiteness will be performed,\n avoiding error. Global default: False.

    \n\n
    *New in version 0.3.0.*\n
    \n\n

    working_memory : int, optional\n If set, mlsauce will attempt to limit the size of temporary arrays\n to this number of MiB (per job when parallelised), often saving both\n computation time and memory on expensive operations that can be\n performed in chunks. Global default: 1024.

    \n\n
    *New in version 0.3.0.*\n
    \n\n

    print_changed_only : bool, optional\n If True, only the parameters that were set to non-default\n values will be printed when printing an estimator. For example,\n print(SVC()) while True will only print 'SVC()' while the default\n behaviour would be to print 'SVC(C=1.0, cache_size=200, ...)' with\n all the non-changed parameters.

    \n\n
    *New in version 0.3.0.*\n
    \n\n

    display : {'text', 'diagram'}, optional\n If 'diagram', estimators will be displayed as text in a jupyter lab\n of notebook context. If 'text', estimators will be displayed as\n text. Default is 'text'.

    \n\n
    *New in version 0.3.0.*\n
    \n\n

    See Also

    \n\n

    config_context: Context manager for global mlsauce configuration\nget_config: Retrieve current values of the global configuration

    \n", "signature": "(\tassume_finite=None,\tworking_memory=None,\tprint_changed_only=None,\tdisplay=None):", "funcdef": "def"}, "mlsauce.config_context": {"fullname": "mlsauce.config_context", "modulename": "mlsauce", "qualname": "config_context", "kind": "function", "doc": "

    Context manager for global mlsauce configuration

    \n\n

    Parameters

    \n\n

    assume_finite : bool, optional\n If True, validation for finiteness will be skipped,\n saving time, but leading to potential crashes. If\n False, validation for finiteness will be performed,\n avoiding error. Global default: False.

    \n\n

    working_memory : int, optional\n If set, mlsauce will attempt to limit the size of temporary arrays\n to this number of MiB (per job when parallelised), often saving both\n computation time and memory on expensive operations that can be\n performed in chunks. Global default: 1024.

    \n\n

    print_changed_only : bool, optional\n If True, only the parameters that were set to non-default\n values will be printed when printing an estimator. For example,\n print(SVC()) while True will only print 'SVC()', but would print\n 'SVC(C=1.0, cache_size=200, ...)' with all the non-changed parameters\n when False. Default is True.

    \n\n
    *New in version 0.3.0.*\n
    \n\n

    display : {'text', 'diagram'}, optional\n If 'diagram', estimators will be displayed as text in a jupyter lab\n of notebook context. If 'text', estimators will be displayed as\n text. Default is 'text'.

    \n\n
    *New in version 0.3.0.*\n
    \n\n

    Notes

    \n\n

    All settings, not just those presently modified, will be returned to\ntheir previous values when the context manager is exited. This is not\nthread-safe.

    \n\n

    Examples

    \n\n
    \n
    >>> import mlsauce\n>>> from mlsauce.utils.validation import assert_all_finite\n>>> with mlsauce.config_context(assume_finite=True):\n...     assert_all_finite([float('nan')])\n>>> with mlsauce.config_context(assume_finite=True):\n...     with mlsauce.config_context(assume_finite=False):\n...         assert_all_finite([float('nan')])\nTraceback (most recent call last):\n...\nValueError: Input contains NaN, ...\n
    \n
    \n\n

    See Also

    \n\n

    set_config: Set global mlsauce configuration\nget_config: Retrieve current values of the global configuration

    \n", "signature": "(**new_config):", "funcdef": "def"}, "mlsauce.adaopt": {"fullname": "mlsauce.adaopt", "modulename": "mlsauce.adaopt", "kind": "module", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt": {"fullname": "mlsauce.adaopt.AdaOpt", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt", "kind": "class", "doc": "

    AdaOpt classifier.

    \n\n

    Attributes:

    \n\n
    n_iterations: int\n    number of iterations of the optimizer at training time.\n\nlearning_rate: float\n    controls the speed of the optimizer at training time.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nreg_alpha: float\n    L1 regularization parameter for successive errors in the optimizer\n    (at training time).\n\neta: float\n    controls the slope in gradient descent (at training time).\n\ngamma: float\n    controls the step size in gradient descent (at training time).\n\nk: int\n    number of nearest neighbors selected at test time for classification.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\nn_clusters: int\n    number of clusters, if MiniBatch k-means is used at test time\n    (for faster prediction).\n\nbatch_size: int\n    size of the batch, if MiniBatch k-means is used at test time\n    (for faster prediction).\n\nrow_sample: float\n    percentage of rows chosen from training set (by stratified subsampling,\n    for faster prediction).\n\ntype_dist: str\n    distance used for finding the nearest neighbors; currently `euclidean-f`\n    (euclidean distances calculated as whole), `euclidean` (euclidean distances\n    calculated row by row), `cosine` (cosine distance).\n\nn_jobs: int\n    number of cpus for parallel processing (default: None)\n\nverbose: int\n    progress bar for parallel processing (yes = 1) or not (no = 0)\n\ncache: boolean\n    if the nearest neighbors are cached or not, for faster retrieval in\n    subsequent calls.\n\nn_clusters_input: int\n    number of clusters (a priori) for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin"}, "mlsauce.adaopt.AdaOpt.__init__": {"fullname": "mlsauce.adaopt.AdaOpt.__init__", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.__init__", "kind": "function", "doc": "

    \n", "signature": "(\tn_iterations=50,\tlearning_rate=0.3,\treg_lambda=0.1,\treg_alpha=0.5,\teta=0.01,\tgamma=0.01,\tk=3,\ttolerance=0,\tn_clusters=0,\tbatch_size=100,\trow_sample=0.8,\ttype_dist='euclidean-f',\tn_jobs=None,\tverbose=0,\tcache=True,\tn_clusters_input=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tseed=123)"}, "mlsauce.adaopt.AdaOpt.n_iterations": {"fullname": "mlsauce.adaopt.AdaOpt.n_iterations", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.n_iterations", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.learning_rate": {"fullname": "mlsauce.adaopt.AdaOpt.learning_rate", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.learning_rate", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"fullname": "mlsauce.adaopt.AdaOpt.reg_lambda", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.reg_lambda", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"fullname": "mlsauce.adaopt.AdaOpt.reg_alpha", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.reg_alpha", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.eta": {"fullname": "mlsauce.adaopt.AdaOpt.eta", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.eta", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.gamma": {"fullname": "mlsauce.adaopt.AdaOpt.gamma", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.gamma", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.k": {"fullname": "mlsauce.adaopt.AdaOpt.k", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.k", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.tolerance": {"fullname": "mlsauce.adaopt.AdaOpt.tolerance", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.tolerance", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.n_clusters": {"fullname": "mlsauce.adaopt.AdaOpt.n_clusters", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.n_clusters", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.batch_size": {"fullname": "mlsauce.adaopt.AdaOpt.batch_size", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.batch_size", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.row_sample": {"fullname": "mlsauce.adaopt.AdaOpt.row_sample", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.row_sample", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.type_dist": {"fullname": "mlsauce.adaopt.AdaOpt.type_dist", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.type_dist", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.n_jobs": {"fullname": "mlsauce.adaopt.AdaOpt.n_jobs", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.n_jobs", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.cache": {"fullname": "mlsauce.adaopt.AdaOpt.cache", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.cache", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.verbose": {"fullname": "mlsauce.adaopt.AdaOpt.verbose", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.verbose", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"fullname": "mlsauce.adaopt.AdaOpt.n_clusters_input", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.n_clusters_input", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.clustering_method": {"fullname": "mlsauce.adaopt.AdaOpt.clustering_method", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.clustering_method", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"fullname": "mlsauce.adaopt.AdaOpt.cluster_scaling", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.cluster_scaling", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.seed": {"fullname": "mlsauce.adaopt.AdaOpt.seed", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.seed", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.fit": {"fullname": "mlsauce.adaopt.AdaOpt.fit", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.fit", "kind": "function", "doc": "

    Fit AdaOpt to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.adaopt.AdaOpt.predict": {"fullname": "mlsauce.adaopt.AdaOpt.predict", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.predict", "kind": "function", "doc": "

    Predict test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
    \n\n

    Returns:

    \n\n
    model predictions: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.adaopt.AdaOpt.predict_proba": {"fullname": "mlsauce.adaopt.AdaOpt.predict_proba", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.predict_proba", "kind": "function", "doc": "

    Predict probabilities for test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
    \n\n

    Returns:

    \n\n
    probability estimates for test data: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.adaopt.AdaOpt.set_score_request": {"fullname": "mlsauce.adaopt.AdaOpt.set_score_request", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.booster": {"fullname": "mlsauce.booster", "modulename": "mlsauce.booster", "kind": "module", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier": {"fullname": "mlsauce.booster.LSBoostClassifier", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier", "kind": "class", "doc": "

    LSBoost classifier.

    \n\n

    Attributes:

    \n\n
    n_estimators: int\n    number of boosting iterations.\n\nlearning_rate: float\n    controls the learning speed at training time.\n\nn_hidden_features: int\n    number of nodes in successive hidden layers.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'.\n\nrow_sample: float\n    percentage of rows chosen from the training set.\n\ncol_sample: float\n    percentage of columns chosen from the training set.\n\ndropout: float\n    percentage of nodes dropped from the training set.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\ndirect_link: bool\n    indicates whether the original features are included (True) in model's\n    fitting or not (False).\n\nverbose: int\n    progress bar (yes = 1) or not (no = 0) (currently).\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n\nsolver: str\n    type of 'weak' learner; currently in ('ridge', 'lasso', 'enet').\n    'enet' is a combination of 'ridge' and 'lasso' called Elastic Net.\n\nactivation: str\n    activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'\n\nn_clusters: int\n    number of clusters for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\ndegree: int\n    degree of features interactions to include in the model\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin"}, "mlsauce.booster.LSBoostClassifier.__init__": {"fullname": "mlsauce.booster.LSBoostClassifier.__init__", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.__init__", "kind": "function", "doc": "

    \n", "signature": "(\tn_estimators=100,\tlearning_rate=0.1,\tn_hidden_features=5,\treg_lambda=0.1,\talpha=0.5,\trow_sample=1,\tcol_sample=1,\tdropout=0,\ttolerance=0.0001,\tdirect_link=1,\tverbose=1,\tseed=123,\tbackend='cpu',\tsolver='ridge',\tactivation='relu',\tn_clusters=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tdegree=0)"}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"fullname": "mlsauce.booster.LSBoostClassifier.n_estimators", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.n_estimators", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"fullname": "mlsauce.booster.LSBoostClassifier.learning_rate", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.learning_rate", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"fullname": "mlsauce.booster.LSBoostClassifier.n_hidden_features", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.n_hidden_features", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"fullname": "mlsauce.booster.LSBoostClassifier.reg_lambda", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.reg_lambda", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.alpha": {"fullname": "mlsauce.booster.LSBoostClassifier.alpha", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.alpha", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.row_sample": {"fullname": "mlsauce.booster.LSBoostClassifier.row_sample", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.row_sample", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.col_sample": {"fullname": "mlsauce.booster.LSBoostClassifier.col_sample", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.col_sample", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.dropout": {"fullname": "mlsauce.booster.LSBoostClassifier.dropout", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.dropout", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.tolerance": {"fullname": "mlsauce.booster.LSBoostClassifier.tolerance", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.tolerance", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.direct_link": {"fullname": "mlsauce.booster.LSBoostClassifier.direct_link", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.direct_link", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.verbose": {"fullname": "mlsauce.booster.LSBoostClassifier.verbose", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.verbose", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.seed": {"fullname": "mlsauce.booster.LSBoostClassifier.seed", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.seed", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.backend": {"fullname": "mlsauce.booster.LSBoostClassifier.backend", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.backend", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.obj": {"fullname": "mlsauce.booster.LSBoostClassifier.obj", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.obj", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.solver": {"fullname": "mlsauce.booster.LSBoostClassifier.solver", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.solver", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.activation": {"fullname": "mlsauce.booster.LSBoostClassifier.activation", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.activation", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"fullname": "mlsauce.booster.LSBoostClassifier.n_clusters", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.n_clusters", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"fullname": "mlsauce.booster.LSBoostClassifier.clustering_method", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.clustering_method", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"fullname": "mlsauce.booster.LSBoostClassifier.cluster_scaling", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.cluster_scaling", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.degree": {"fullname": "mlsauce.booster.LSBoostClassifier.degree", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.degree", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.poly_": {"fullname": "mlsauce.booster.LSBoostClassifier.poly_", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.poly_", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.fit": {"fullname": "mlsauce.booster.LSBoostClassifier.fit", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.fit", "kind": "function", "doc": "

    Fit Booster (classifier) to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.booster.LSBoostClassifier.predict": {"fullname": "mlsauce.booster.LSBoostClassifier.predict", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.predict", "kind": "function", "doc": "

    Predict test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
    \n\n

    Returns:

    \n\n
    model predictions: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"fullname": "mlsauce.booster.LSBoostClassifier.predict_proba", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.predict_proba", "kind": "function", "doc": "

    Predict probabilities for test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
    \n\n

    Returns:

    \n\n
    probability estimates for test data: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"fullname": "mlsauce.booster.LSBoostClassifier.set_score_request", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.booster.LSBoostRegressor": {"fullname": "mlsauce.booster.LSBoostRegressor", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor", "kind": "class", "doc": "

    LSBoost regressor.

    \n\n

    Attributes:

    \n\n
    n_estimators: int\n    number of boosting iterations.\n\nlearning_rate: float\n    controls the learning speed at training time.\n\nn_hidden_features: int\n    number of nodes in successive hidden layers.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'\n\nrow_sample: float\n    percentage of rows chosen from the training set.\n\ncol_sample: float\n    percentage of columns chosen from the training set.\n\ndropout: float\n    percentage of nodes dropped from the training set.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\ndirect_link: bool\n    indicates whether the original features are included (True) in model's\n    fitting or not (False).\n\nverbose: int\n    progress bar (yes = 1) or not (no = 0) (currently).\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n\nsolver: str\n    type of 'weak' learner; currently in ('ridge', 'lasso')\n\nactivation: str\n    activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'\n\ntype_pi: str.\n    type of prediction interval; currently \"kde\" (default) or \"bootstrap\".\n    Used only in `self.predict`, for `self.replications` > 0 and `self.kernel`\n    in ('gaussian', 'tophat'). Default is `None`.\n\nreplications: int.\n    number of replications (if needed) for predictive simulation.\n    Used only in `self.predict`, for `self.kernel` in ('gaussian',\n    'tophat') and `self.type_pi = 'kde'`. Default is `None`.\n\nn_clusters: int\n    number of clusters for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\ndegree: int\n    degree of features interactions to include in the model\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.booster.LSBoostRegressor.__init__": {"fullname": "mlsauce.booster.LSBoostRegressor.__init__", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.__init__", "kind": "function", "doc": "

    \n", "signature": "(\tn_estimators=100,\tlearning_rate=0.1,\tn_hidden_features=5,\treg_lambda=0.1,\talpha=0.5,\trow_sample=1,\tcol_sample=1,\tdropout=0,\ttolerance=0.0001,\tdirect_link=1,\tverbose=1,\tseed=123,\tbackend='cpu',\tsolver='ridge',\tactivation='relu',\ttype_pi=None,\treplications=None,\tkernel=None,\tn_clusters=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tdegree=0)"}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"fullname": "mlsauce.booster.LSBoostRegressor.n_estimators", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.n_estimators", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"fullname": "mlsauce.booster.LSBoostRegressor.learning_rate", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.learning_rate", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"fullname": "mlsauce.booster.LSBoostRegressor.n_hidden_features", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.n_hidden_features", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"fullname": "mlsauce.booster.LSBoostRegressor.reg_lambda", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.reg_lambda", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.alpha": {"fullname": "mlsauce.booster.LSBoostRegressor.alpha", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.alpha", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.row_sample": {"fullname": "mlsauce.booster.LSBoostRegressor.row_sample", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.row_sample", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.col_sample": {"fullname": "mlsauce.booster.LSBoostRegressor.col_sample", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.col_sample", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.dropout": {"fullname": "mlsauce.booster.LSBoostRegressor.dropout", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.dropout", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.tolerance": {"fullname": "mlsauce.booster.LSBoostRegressor.tolerance", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.tolerance", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.direct_link": {"fullname": "mlsauce.booster.LSBoostRegressor.direct_link", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.direct_link", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.verbose": {"fullname": "mlsauce.booster.LSBoostRegressor.verbose", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.verbose", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.seed": {"fullname": "mlsauce.booster.LSBoostRegressor.seed", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.seed", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.backend": {"fullname": "mlsauce.booster.LSBoostRegressor.backend", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.backend", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.obj": {"fullname": "mlsauce.booster.LSBoostRegressor.obj", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.obj", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.solver": {"fullname": "mlsauce.booster.LSBoostRegressor.solver", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.solver", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.activation": {"fullname": "mlsauce.booster.LSBoostRegressor.activation", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.activation", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.type_pi": {"fullname": "mlsauce.booster.LSBoostRegressor.type_pi", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.type_pi", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.replications": {"fullname": "mlsauce.booster.LSBoostRegressor.replications", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.replications", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.kernel": {"fullname": "mlsauce.booster.LSBoostRegressor.kernel", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.kernel", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"fullname": "mlsauce.booster.LSBoostRegressor.n_clusters", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.n_clusters", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"fullname": "mlsauce.booster.LSBoostRegressor.clustering_method", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.clustering_method", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"fullname": "mlsauce.booster.LSBoostRegressor.cluster_scaling", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.cluster_scaling", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.degree": {"fullname": "mlsauce.booster.LSBoostRegressor.degree", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.degree", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.poly_": {"fullname": "mlsauce.booster.LSBoostRegressor.poly_", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.poly_", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.fit": {"fullname": "mlsauce.booster.LSBoostRegressor.fit", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.fit", "kind": "function", "doc": "

    Fit Booster (regressor) to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n   Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.booster.LSBoostRegressor.predict": {"fullname": "mlsauce.booster.LSBoostRegressor.predict", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.predict", "kind": "function", "doc": "

    Predict probabilities for test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\nlevel: int\n    Level of confidence (default = 95)\n\nmethod: str\n    `None`, or 'splitconformal', 'localconformal'\n    prediction (if you specify `return_pi = True`)\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
    \n\n

    Returns:

    \n\n
    probability estimates for test data: {array-like}\n
    \n", "signature": "(self, X, level=95, method=None, **kwargs):", "funcdef": "def"}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"fullname": "mlsauce.booster.LSBoostRegressor.set_predict_request", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.set_predict_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"fullname": "mlsauce.booster.LSBoostRegressor.set_score_request", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.datasets": {"fullname": "mlsauce.datasets", "modulename": "mlsauce.datasets", "kind": "module", "doc": "

    \n"}, "mlsauce.datasets.dowload": {"fullname": "mlsauce.datasets.dowload", "modulename": "mlsauce.datasets.dowload", "kind": "module", "doc": "

    \n"}, "mlsauce.datasets.dowload.download": {"fullname": "mlsauce.datasets.dowload.download", "modulename": "mlsauce.datasets.dowload", "qualname": "download", "kind": "function", "doc": "

    \n", "signature": "(\tpkgname='MASS',\tdataset='Boston',\tsource='https://cran.r-universe.dev/',\t**kwargs):", "funcdef": "def"}, "mlsauce.demo": {"fullname": "mlsauce.demo", "modulename": "mlsauce.demo", "kind": "module", "doc": "

    \n"}, "mlsauce.elasticnet": {"fullname": "mlsauce.elasticnet", "modulename": "mlsauce.elasticnet", "kind": "module", "doc": "

    \n"}, "mlsauce.elasticnet.ElasticNetRegressor": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor", "kind": "class", "doc": "

    Elasticnet.

    \n\n

    Attributes:

    \n\n
    reg_lambda: float\n    regularization parameter.\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.__init__", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.__init__", "kind": "function", "doc": "

    \n", "signature": "(reg_lambda=0.1, alpha=0.5, backend='cpu')"}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.reg_lambda", "kind": "variable", "doc": "

    \n"}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.alpha", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.alpha", "kind": "variable", "doc": "

    \n"}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.backend", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.backend", "kind": "variable", "doc": "

    \n"}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.fit", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.fit", "kind": "function", "doc": "

    Fit matrixops (classifier) to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.predict", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.predict", "kind": "function", "doc": "

    Predict test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
    \n\n

    Returns:

    \n\n
    model predictions: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.set_score_request", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.lasso": {"fullname": "mlsauce.lasso", "modulename": "mlsauce.lasso", "kind": "module", "doc": "

    \n"}, "mlsauce.lasso.LassoRegressor": {"fullname": "mlsauce.lasso.LassoRegressor", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor", "kind": "class", "doc": "

    Lasso.

    \n\n

    Attributes:

    \n\n
    reg_lambda: float\n    L1 regularization parameter.\n\nmax_iter: int\n    number of iterations of lasso shooting algorithm.\n\ntol: float\n    tolerance for convergence of lasso shooting algorithm.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu').\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.lasso.LassoRegressor.__init__": {"fullname": "mlsauce.lasso.LassoRegressor.__init__", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.__init__", "kind": "function", "doc": "

    \n", "signature": "(reg_lambda=0.1, max_iter=10, tol=0.001, backend='cpu')"}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"fullname": "mlsauce.lasso.LassoRegressor.reg_lambda", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.reg_lambda", "kind": "variable", "doc": "

    \n"}, "mlsauce.lasso.LassoRegressor.max_iter": {"fullname": "mlsauce.lasso.LassoRegressor.max_iter", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.max_iter", "kind": "variable", "doc": "

    \n"}, "mlsauce.lasso.LassoRegressor.tol": {"fullname": "mlsauce.lasso.LassoRegressor.tol", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.tol", "kind": "variable", "doc": "

    \n"}, "mlsauce.lasso.LassoRegressor.backend": {"fullname": "mlsauce.lasso.LassoRegressor.backend", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.backend", "kind": "variable", "doc": "

    \n"}, "mlsauce.lasso.LassoRegressor.fit": {"fullname": "mlsauce.lasso.LassoRegressor.fit", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.fit", "kind": "function", "doc": "

    Fit matrixops (classifier) to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.lasso.LassoRegressor.predict": {"fullname": "mlsauce.lasso.LassoRegressor.predict", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.predict", "kind": "function", "doc": "

    Predict test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
    \n\n

    Returns:

    \n\n
    model predictions: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.lasso.LassoRegressor.set_score_request": {"fullname": "mlsauce.lasso.LassoRegressor.set_score_request", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist": {"fullname": "mlsauce.nonconformist", "modulename": "mlsauce.nonconformist", "kind": "module", "doc": "

    docstring

    \n"}, "mlsauce.nonconformist.AbsErrorErrFunc": {"fullname": "mlsauce.nonconformist.AbsErrorErrFunc", "modulename": "mlsauce.nonconformist", "qualname": "AbsErrorErrFunc", "kind": "class", "doc": "

    Calculates absolute error nonconformity for regression problems.

    \n\n

    For each correct output in y, nonconformity is defined as

    \n\n

    $$| y_i - \\hat{y}_i |$$

    \n", "bases": "mlsauce.nonconformist.nc.RegressionErrFunc"}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"fullname": "mlsauce.nonconformist.AbsErrorErrFunc.apply", "modulename": "mlsauce.nonconformist", "qualname": "AbsErrorErrFunc.apply", "kind": "function", "doc": "

    Apply the nonconformity function.

    \n\n

    Parameters

    \n\n

    prediction : numpy array of shape [n_samples, n_classes]\n Class probability estimates for each sample.

    \n\n

    y : numpy array of shape [n_samples]\n True output labels of each sample.

    \n\n

    Returns

    \n\n

    nc : numpy array of shape [n_samples]\n Nonconformity scores of the samples.

    \n", "signature": "(self, prediction, y):", "funcdef": "def"}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"fullname": "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse", "modulename": "mlsauce.nonconformist", "qualname": "AbsErrorErrFunc.apply_inverse", "kind": "function", "doc": "

    Apply the inverse of the nonconformity function (i.e.,\ncalculate prediction interval).

    \n\n

    Parameters

    \n\n

    nc : numpy array of shape [n_calibration_samples]\n Nonconformity scores obtained for conformal predictor.

    \n\n

    significance : float\n Significance level (0, 1).

    \n\n

    Returns

    \n\n

    interval : numpy array of shape [n_samples, 2]\n Minimum and maximum interval boundaries for each prediction.

    \n", "signature": "(self, nc, significance):", "funcdef": "def"}, "mlsauce.nonconformist.QuantileRegErrFunc": {"fullname": "mlsauce.nonconformist.QuantileRegErrFunc", "modulename": "mlsauce.nonconformist", "qualname": "QuantileRegErrFunc", "kind": "class", "doc": "

    Calculates conformalized quantile regression error.

    \n\n

    For each correct output in y, nonconformity is defined as

    \n\n

    $$max{\\hat{q}_low - y, y - \\hat{q}_high}$$

    \n", "bases": "mlsauce.nonconformist.nc.RegressionErrFunc"}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"fullname": "mlsauce.nonconformist.QuantileRegErrFunc.apply", "modulename": "mlsauce.nonconformist", "qualname": "QuantileRegErrFunc.apply", "kind": "function", "doc": "

    Apply the nonconformity function.

    \n\n

    Parameters

    \n\n

    prediction : numpy array of shape [n_samples, n_classes]\n Class probability estimates for each sample.

    \n\n

    y : numpy array of shape [n_samples]\n True output labels of each sample.

    \n\n

    Returns

    \n\n

    nc : numpy array of shape [n_samples]\n Nonconformity scores of the samples.

    \n", "signature": "(self, prediction, y):", "funcdef": "def"}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"fullname": "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse", "modulename": "mlsauce.nonconformist", "qualname": "QuantileRegErrFunc.apply_inverse", "kind": "function", "doc": "

    Apply the inverse of the nonconformity function (i.e.,\ncalculate prediction interval).

    \n\n

    Parameters

    \n\n

    nc : numpy array of shape [n_calibration_samples]\n Nonconformity scores obtained for conformal predictor.

    \n\n

    significance : float\n Significance level (0, 1).

    \n\n

    Returns

    \n\n

    interval : numpy array of shape [n_samples, 2]\n Minimum and maximum interval boundaries for each prediction.

    \n", "signature": "(self, nc, significance):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorAdapter": {"fullname": "mlsauce.nonconformist.RegressorAdapter", "modulename": "mlsauce.nonconformist", "qualname": "RegressorAdapter", "kind": "class", "doc": "

    Base class for all estimators in scikit-learn.

    \n\n

    Inheriting from this class provides default implementations of:

    \n\n
      \n
    • setting and getting parameters used by GridSearchCV and friends;
    • \n
    • textual and HTML representation displayed in terminals and IDEs;
    • \n
    • estimator serialization;
    • \n
    • parameters validation;
    • \n
    • data validation;
    • \n
    • feature names validation.
    • \n
    \n\n

    Read more in the :ref:User Guide <rolling_your_own_estimator>.

    \n\n

    Notes

    \n\n

    All estimators should specify all the parameters that can be set\nat the class level in their __init__ as explicit keyword\narguments (no *args or **kwargs).

    \n\n

    Examples

    \n\n
    \n
    >>> import numpy as np\n>>> from sklearn.base import BaseEstimator\n>>> class MyEstimator(BaseEstimator):\n...     def __init__(self, *, param=1):\n...         self.param = param\n...     def fit(self, X, y=None):\n...         self.is_fitted_ = True\n...         return self\n...     def predict(self, X):\n...         return np.full(shape=X.shape[0], fill_value=self.param)\n>>> estimator = MyEstimator(param=2)\n>>> estimator.get_params()\n{'param': 2}\n>>> X = np.array([[1, 2], [2, 3], [3, 4]])\n>>> y = np.array([1, 0, 1])\n>>> estimator.fit(X, y).predict(X)\narray([2, 2, 2])\n>>> estimator.set_params(param=3).fit(X, y).predict(X)\narray([3, 3, 3])\n
    \n
    \n", "bases": "mlsauce.nonconformist.base.BaseModelAdapter"}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"fullname": "mlsauce.nonconformist.RegressorAdapter.__init__", "modulename": "mlsauce.nonconformist", "qualname": "RegressorAdapter.__init__", "kind": "function", "doc": "

    \n", "signature": "(model, fit_params=None)"}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"fullname": "mlsauce.nonconformist.RegressorAdapter.set_fit_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorAdapter.set_fit_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"fullname": "mlsauce.nonconformist.RegressorAdapter.set_predict_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorAdapter.set_predict_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNc": {"fullname": "mlsauce.nonconformist.RegressorNc", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNc", "kind": "class", "doc": "

    Nonconformity scorer using an underlying regression model.

    \n\n

    Parameters

    \n\n

    model : RegressorAdapter\n Underlying regression model used for calculating nonconformity scores.

    \n\n

    err_func : RegressionErrFunc\n Error function object.

    \n\n

    normalizer : BaseScorer\n Normalization model.

    \n\n

    beta : float\n Normalization smoothing parameter. As the beta-value increases,\n the normalized nonconformity function approaches a non-normalized\n equivalent.

    \n\n

    Attributes

    \n\n

    model : RegressorAdapter\n Underlying model object.

    \n\n

    err_func : RegressionErrFunc\n Scorer function used to calculate nonconformity scores.

    \n\n

    See also

    \n\n

    ProbEstClassifierNc, NormalizedRegressorNc

    \n", "bases": "mlsauce.nonconformist.nc.BaseModelNc"}, "mlsauce.nonconformist.RegressorNc.__init__": {"fullname": "mlsauce.nonconformist.RegressorNc.__init__", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNc.__init__", "kind": "function", "doc": "

    \n", "signature": "(\tmodel,\terr_func=<mlsauce.nonconformist.nc.AbsErrorErrFunc object>,\tnormalizer=None,\tbeta=1e-06)"}, "mlsauce.nonconformist.RegressorNc.predict": {"fullname": "mlsauce.nonconformist.RegressorNc.predict", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNc.predict", "kind": "function", "doc": "

    Constructs prediction intervals for a set of test examples.

    \n\n

    Predicts the output of each test pattern using the underlying model,\nand applies the (partial) inverse nonconformity function to each\nprediction, resulting in a prediction interval for each test pattern.

    \n\n

    Parameters

    \n\n

    x : numpy array of shape [n_samples, n_features]\n Inputs of patters for which to predict output values.

    \n\n

    significance : float\n Significance level (maximum allowed error rate) of predictions.\n Should be a float between 0 and 1. If None, then intervals for\n all significance levels (0.01, 0.02, ..., 0.99) are output in a\n 3d-matrix.

    \n\n

    Returns

    \n\n

    p : numpy array of shape [n_samples, 2] or [n_samples, 2, 99]\n If significance is None, then p contains the interval (minimum\n and maximum boundaries) for each test pattern, and each significance\n level (0.01, 0.02, ..., 0.99). If significance is a float between\n 0 and 1, then p contains the prediction intervals (minimum and\n maximum boundaries) for the set of test patterns at the chosen\n significance level.

    \n", "signature": "(self, x, nc, significance=None):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"fullname": "mlsauce.nonconformist.RegressorNc.set_fit_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNc.set_fit_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"fullname": "mlsauce.nonconformist.RegressorNc.set_predict_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNc.set_predict_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"fullname": "mlsauce.nonconformist.RegressorNc.set_score_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNc.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNormalizer": {"fullname": "mlsauce.nonconformist.RegressorNormalizer", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer", "kind": "class", "doc": "

    Base class for all estimators in scikit-learn.

    \n\n

    Inheriting from this class provides default implementations of:

    \n\n
      \n
    • setting and getting parameters used by GridSearchCV and friends;
    • \n
    • textual and HTML representation displayed in terminals and IDEs;
    • \n
    • estimator serialization;
    • \n
    • parameters validation;
    • \n
    • data validation;
    • \n
    • feature names validation.
    • \n
    \n\n

    Read more in the :ref:User Guide <rolling_your_own_estimator>.

    \n\n

    Notes

    \n\n

    All estimators should specify all the parameters that can be set\nat the class level in their __init__ as explicit keyword\narguments (no *args or **kwargs).

    \n\n

    Examples

    \n\n
    \n
    >>> import numpy as np\n>>> from sklearn.base import BaseEstimator\n>>> class MyEstimator(BaseEstimator):\n...     def __init__(self, *, param=1):\n...         self.param = param\n...     def fit(self, X, y=None):\n...         self.is_fitted_ = True\n...         return self\n...     def predict(self, X):\n...         return np.full(shape=X.shape[0], fill_value=self.param)\n>>> estimator = MyEstimator(param=2)\n>>> estimator.get_params()\n{'param': 2}\n>>> X = np.array([[1, 2], [2, 3], [3, 4]])\n>>> y = np.array([1, 0, 1])\n>>> estimator.fit(X, y).predict(X)\narray([2, 2, 2])\n>>> estimator.set_params(param=3).fit(X, y).predict(X)\narray([3, 3, 3])\n
    \n
    \n", "bases": "mlsauce.nonconformist.nc.BaseScorer"}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.__init__", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.__init__", "kind": "function", "doc": "

    \n", "signature": "(base_model, normalizer_model, err_func)"}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.base_model", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.base_model", "kind": "variable", "doc": "

    \n"}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.normalizer_model", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.normalizer_model", "kind": "variable", "doc": "

    \n"}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.err_func", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.err_func", "kind": "variable", "doc": "

    \n"}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.fit", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.fit", "kind": "function", "doc": "

    \n", "signature": "(self, x, y):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNormalizer.score": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.score", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.score", "kind": "function", "doc": "

    \n", "signature": "(self, x, y=None):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.set_fit_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.set_fit_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.set_score_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.IcpRegressor": {"fullname": "mlsauce.nonconformist.IcpRegressor", "modulename": "mlsauce.nonconformist", "qualname": "IcpRegressor", "kind": "class", "doc": "

    Inductive conformal regressor.

    \n\n

    Parameters

    \n\n

    nc_function : BaseScorer\n Nonconformity scorer object used to calculate nonconformity of\n calibration examples and test patterns. Should implement fit(x, y),\n calc_nc(x, y) and predict(x, nc_scores, significance).

    \n\n

    Attributes

    \n\n

    cal_x : numpy array of shape [n_cal_examples, n_features]\n Inputs of calibration set.

    \n\n

    cal_y : numpy array of shape [n_cal_examples]\n Outputs of calibration set.

    \n\n

    nc_function : BaseScorer\n Nonconformity scorer object used to calculate nonconformity scores.

    \n\n

    See also

    \n\n

    IcpClassifier

    \n\n

    References

    \n\n

    Examples

    \n\n
    \n
    >>> import numpy as np\n>>> from sklearn.datasets import load_boston\n>>> from sklearn.tree import DecisionTreeRegressor\n>>> from nonconformist.base import RegressorAdapter\n>>> from nonconformist.icp import IcpRegressor\n>>> from nonconformist.nc import RegressorNc, AbsErrorErrFunc\n>>> boston = load_boston()\n>>> idx = np.random.permutation(boston.target.size)\n>>> train = idx[:int(idx.size / 3)]\n>>> cal = idx[int(idx.size / 3):int(2 * idx.size / 3)]\n>>> test = idx[int(2 * idx.size / 3):]\n>>> model = RegressorAdapter(DecisionTreeRegressor())\n>>> nc = RegressorNc(model, AbsErrorErrFunc())\n>>> icp = IcpRegressor(nc)\n>>> icp.fit(boston.data[train, :], boston.target[train])\n>>> icp.calibrate(boston.data[cal, :], boston.target[cal])\n>>> icp.predict(boston.data[test, :], significance=0.10)\n...     # doctest: +SKIP\narray([[  5. ,  20.6],\n        [ 15.5,  31.1],\n        ...,\n        [ 14.2,  29.8],\n        [ 11.6,  27.2]])\n
    \n
    \n\n
    \n
    \n
      \n
    \n
    \n", "bases": "mlsauce.nonconformist.icp.BaseIcp, mlsauce.nonconformist.base.RegressorMixin"}, "mlsauce.nonconformist.IcpRegressor.__init__": {"fullname": "mlsauce.nonconformist.IcpRegressor.__init__", "modulename": "mlsauce.nonconformist", "qualname": "IcpRegressor.__init__", "kind": "function", "doc": "

    \n", "signature": "(nc_function, condition=None)"}, "mlsauce.nonconformist.IcpRegressor.predict": {"fullname": "mlsauce.nonconformist.IcpRegressor.predict", "modulename": "mlsauce.nonconformist", "qualname": "IcpRegressor.predict", "kind": "function", "doc": "

    Predict the output values for a set of input patterns.

    \n\n

    Parameters

    \n\n

    x : numpy array of shape [n_samples, n_features]\n Inputs of patters for which to predict output values.

    \n\n

    significance : float\n Significance level (maximum allowed error rate) of predictions.\n Should be a float between 0 and 1. If None, then intervals for\n all significance levels (0.01, 0.02, ..., 0.99) are output in a\n 3d-matrix.

    \n\n

    Returns

    \n\n

    p : numpy array of shape [n_samples, 2] or [n_samples, 2, 99}\n If significance is None, then p contains the interval (minimum\n and maximum boundaries) for each test pattern, and each significance\n level (0.01, 0.02, ..., 0.99). If significance is a float between\n 0 and 1, then p contains the prediction intervals (minimum and\n maximum boundaries) for the set of test patterns at the chosen\n significance level.

    \n", "signature": "(self, x, significance=None):", "funcdef": "def"}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"fullname": "mlsauce.nonconformist.IcpRegressor.set_fit_request", "modulename": "mlsauce.nonconformist", "qualname": "IcpRegressor.set_fit_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"fullname": "mlsauce.nonconformist.IcpRegressor.set_predict_request", "modulename": "mlsauce.nonconformist", "qualname": "IcpRegressor.set_predict_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.predictioninterval": {"fullname": "mlsauce.predictioninterval", "modulename": "mlsauce.predictioninterval", "kind": "module", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval": {"fullname": "mlsauce.predictioninterval.PredictionInterval", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval", "kind": "class", "doc": "

    Class PredictionInterval: Obtain prediction intervals.

    \n\n

    Attributes:

    \n\n
    obj: an object;\n    fitted object containing methods `fit` and `predict`\n\nmethod: a string;\n    method for constructing the prediction intervals.\n    Currently \"splitconformal\" (default) and \"localconformal\"\n\nlevel: a float;\n    Confidence level for prediction intervals. Default is 95,\n    equivalent to a miscoverage error of 5 (%)\n\nreplications: an integer;\n    Number of replications for simulated conformal (default is `None`)\n\ntype_pi: a string;\n    type of prediction interval: currently \"kde\" (default) or \"bootstrap\"\n\nseed: an integer;\n    Reproducibility of fit (there's a random split between fitting and calibration data)\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"fullname": "mlsauce.predictioninterval.PredictionInterval.__init__", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.__init__", "kind": "function", "doc": "

    \n", "signature": "(\tobj,\tmethod='splitconformal',\tlevel=95,\ttype_pi='bootstrap',\treplications=None,\tkernel=None,\tagg='mean',\tseed=123)"}, "mlsauce.predictioninterval.PredictionInterval.obj": {"fullname": "mlsauce.predictioninterval.PredictionInterval.obj", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.obj", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.method": {"fullname": "mlsauce.predictioninterval.PredictionInterval.method", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.method", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.level": {"fullname": "mlsauce.predictioninterval.PredictionInterval.level", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.level", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"fullname": "mlsauce.predictioninterval.PredictionInterval.type_pi", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.type_pi", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.replications": {"fullname": "mlsauce.predictioninterval.PredictionInterval.replications", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.replications", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"fullname": "mlsauce.predictioninterval.PredictionInterval.kernel", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.kernel", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.agg": {"fullname": "mlsauce.predictioninterval.PredictionInterval.agg", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.agg", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.seed": {"fullname": "mlsauce.predictioninterval.PredictionInterval.seed", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.seed", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.alpha_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.alpha_", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.quantile_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.quantile_", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.icp_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.icp_", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.calibrated_residuals_", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.scaled_calibrated_residuals_", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.calibrated_residuals_scaler_", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.kde_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.kde_", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.fit": {"fullname": "mlsauce.predictioninterval.PredictionInterval.fit", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.fit", "kind": "function", "doc": "

    Fit the method to training data (X, y).

    \n\n

    Args:

    \n\n
    X: array-like, shape = [n_samples, n_features];\n    Training set vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples, ]; Target values.\n
    \n", "signature": "(self, X, y):", "funcdef": "def"}, "mlsauce.predictioninterval.PredictionInterval.predict": {"fullname": "mlsauce.predictioninterval.PredictionInterval.predict", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.predict", "kind": "function", "doc": "

    Obtain predictions and prediction intervals

    \n\n

    Args:

    \n\n
    X: array-like, shape = [n_samples, n_features];\n    Testing set vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\nreturn_pi: boolean\n    Whether the prediction interval is returned or not.\n    Default is False, for compatibility with other _estimators_.\n    If True, a tuple containing the predictions + lower and upper\n    bounds is returned.\n
    \n", "signature": "(self, X, return_pi=False):", "funcdef": "def"}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"fullname": "mlsauce.predictioninterval.PredictionInterval.set_predict_request", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.set_predict_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"fullname": "mlsauce.predictioninterval.PredictionInterval.set_score_request", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.ridge": {"fullname": "mlsauce.ridge", "modulename": "mlsauce.ridge", "kind": "module", "doc": "

    \n"}, "mlsauce.ridge.RidgeRegressor": {"fullname": "mlsauce.ridge.RidgeRegressor", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor", "kind": "class", "doc": "

    Ridge.

    \n\n

    Attributes:

    \n\n
    reg_lambda: float\n    regularization parameter.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.ridge.RidgeRegressor.__init__": {"fullname": "mlsauce.ridge.RidgeRegressor.__init__", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor.__init__", "kind": "function", "doc": "

    \n", "signature": "(reg_lambda=0.1, backend='cpu')"}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"fullname": "mlsauce.ridge.RidgeRegressor.reg_lambda", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor.reg_lambda", "kind": "variable", "doc": "

    \n"}, "mlsauce.ridge.RidgeRegressor.backend": {"fullname": "mlsauce.ridge.RidgeRegressor.backend", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor.backend", "kind": "variable", "doc": "

    \n"}, "mlsauce.ridge.RidgeRegressor.fit": {"fullname": "mlsauce.ridge.RidgeRegressor.fit", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor.fit", "kind": "function", "doc": "

    Fit matrixops (classifier) to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.ridge.RidgeRegressor.predict": {"fullname": "mlsauce.ridge.RidgeRegressor.predict", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor.predict", "kind": "function", "doc": "

    Predict test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
    \n\n

    Returns:

    \n\n
    model predictions: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"fullname": "mlsauce.ridge.RidgeRegressor.set_score_request", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.setup": {"fullname": "mlsauce.setup", "modulename": "mlsauce.setup", "kind": "module", "doc": "

    \n"}, "mlsauce.stump": {"fullname": "mlsauce.stump", "modulename": "mlsauce.stump", "kind": "module", "doc": "

    \n"}, "mlsauce.stump.StumpClassifier": {"fullname": "mlsauce.stump.StumpClassifier", "modulename": "mlsauce.stump", "qualname": "StumpClassifier", "kind": "class", "doc": "

    Stump classifier.

    \n\n

    Attributes:

    \n\n
    bins: int\n    Number of histogram bins; as in numpy.histogram.\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin"}, "mlsauce.stump.StumpClassifier.__init__": {"fullname": "mlsauce.stump.StumpClassifier.__init__", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.__init__", "kind": "function", "doc": "

    \n", "signature": "(bins='auto')"}, "mlsauce.stump.StumpClassifier.bins": {"fullname": "mlsauce.stump.StumpClassifier.bins", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.bins", "kind": "variable", "doc": "

    \n"}, "mlsauce.stump.StumpClassifier.obj": {"fullname": "mlsauce.stump.StumpClassifier.obj", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.obj", "kind": "variable", "doc": "

    \n"}, "mlsauce.stump.StumpClassifier.fit": {"fullname": "mlsauce.stump.StumpClassifier.fit", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.fit", "kind": "function", "doc": "

    Fit Stump to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\nsample_weight: array_like, shape = [n_samples]\n    Observations weights.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, sample_weight=None, **kwargs):", "funcdef": "def"}, "mlsauce.stump.StumpClassifier.predict": {"fullname": "mlsauce.stump.StumpClassifier.predict", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.predict", "kind": "function", "doc": "

    Predict test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
    \n\n

    Returns:

    \n\n
    model predictions: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.stump.StumpClassifier.predict_proba": {"fullname": "mlsauce.stump.StumpClassifier.predict_proba", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.predict_proba", "kind": "function", "doc": "

    Predict probabilities for test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
    \n\n

    Returns:

    \n\n
    probability estimates for test data: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.stump.StumpClassifier.set_fit_request": {"fullname": "mlsauce.stump.StumpClassifier.set_fit_request", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.set_fit_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.stump.StumpClassifier.set_score_request": {"fullname": "mlsauce.stump.StumpClassifier.set_score_request", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.utils": {"fullname": "mlsauce.utils", "modulename": "mlsauce.utils", "kind": "module", "doc": "

    \n"}, "mlsauce.utils.cluster": {"fullname": "mlsauce.utils.cluster", "modulename": "mlsauce.utils", "qualname": "cluster", "kind": "function", "doc": "

    \n", "signature": "(\tX,\tn_clusters=None,\tmethod='kmeans',\ttype_scaling='standard',\ttraining=True,\tscaler=None,\tlabel_encoder=None,\tclusterer=None,\tseed=123):", "funcdef": "def"}, "mlsauce.utils.subsample": {"fullname": "mlsauce.utils.subsample", "modulename": "mlsauce.utils", "qualname": "subsample", "kind": "function", "doc": "

    \n", "signature": "(y, row_sample=0.8, seed=123):", "funcdef": "def"}, "mlsauce.utils.merge_two_dicts": {"fullname": "mlsauce.utils.merge_two_dicts", "modulename": "mlsauce.utils", "qualname": "merge_two_dicts", "kind": "function", "doc": "

    \n", "signature": "(x, y):", "funcdef": "def"}, "mlsauce.utils.flatten": {"fullname": "mlsauce.utils.flatten", "modulename": "mlsauce.utils", "qualname": "flatten", "kind": "function", "doc": "

    \n", "signature": "(l):", "funcdef": "def"}, "mlsauce.utils.is_float": {"fullname": "mlsauce.utils.is_float", "modulename": "mlsauce.utils", "qualname": "is_float", "kind": "function", "doc": "

    \n", "signature": "(x):", "funcdef": "def"}, "mlsauce.utils.is_factor": {"fullname": "mlsauce.utils.is_factor", "modulename": "mlsauce.utils", "qualname": "is_factor", "kind": "function", "doc": "

    \n", "signature": "(y):", "funcdef": "def"}, "mlsauce.utils.Progbar": {"fullname": "mlsauce.utils.Progbar", "modulename": "mlsauce.utils", "qualname": "Progbar", "kind": "class", "doc": "

    Displays a progress bar.

    \n\n

    Arguments

    \n\n
    target: Total number of steps expected, None if unknown.\nwidth: Progress bar width on screen.\nverbose: Verbosity mode, 0 (silent), 1 (verbose), 2 (semi-verbose)\nstateful_metrics: Iterable of string names of metrics that\n    should *not* be averaged over time. Metrics in this list\n    will be displayed as-is. All others will be averaged\n    by the progbar before display.\ninterval: Minimum visual progress update interval (in seconds).\n
    \n"}, "mlsauce.utils.Progbar.__init__": {"fullname": "mlsauce.utils.Progbar.__init__", "modulename": "mlsauce.utils", "qualname": "Progbar.__init__", "kind": "function", "doc": "

    \n", "signature": "(target, width=30, verbose=1, interval=0.05, stateful_metrics=None)"}, "mlsauce.utils.Progbar.target": {"fullname": "mlsauce.utils.Progbar.target", "modulename": "mlsauce.utils", "qualname": "Progbar.target", "kind": "variable", "doc": "

    \n"}, "mlsauce.utils.Progbar.width": {"fullname": "mlsauce.utils.Progbar.width", "modulename": "mlsauce.utils", "qualname": "Progbar.width", "kind": "variable", "doc": "

    \n"}, "mlsauce.utils.Progbar.verbose": {"fullname": "mlsauce.utils.Progbar.verbose", "modulename": "mlsauce.utils", "qualname": "Progbar.verbose", "kind": "variable", "doc": "

    \n"}, "mlsauce.utils.Progbar.interval": {"fullname": "mlsauce.utils.Progbar.interval", "modulename": "mlsauce.utils", "qualname": "Progbar.interval", "kind": "variable", "doc": "

    \n"}, "mlsauce.utils.Progbar.update": {"fullname": "mlsauce.utils.Progbar.update", "modulename": "mlsauce.utils", "qualname": "Progbar.update", "kind": "function", "doc": "

    Updates the progress bar.

    \n\n

    Arguments

    \n\n
    current: Index of current step.\nvalues: List of tuples:\n    `(name, value_for_last_step)`.\n    If `name` is in `stateful_metrics`,\n    `value_for_last_step` will be displayed as-is.\n    Else, an average of the metric over time will be displayed.\n
    \n", "signature": "(self, current, values=None):", "funcdef": "def"}, "mlsauce.utils.Progbar.add": {"fullname": "mlsauce.utils.Progbar.add", "modulename": "mlsauce.utils", "qualname": "Progbar.add", "kind": "function", "doc": "

    \n", "signature": "(self, n, values=None):", "funcdef": "def"}, "mlsauce.utils.get_beta": {"fullname": "mlsauce.utils.get_beta", "modulename": "mlsauce.utils.get_beta", "kind": "module", "doc": "

    \n"}, "mlsauce.utils.get_beta.get_beta": {"fullname": "mlsauce.utils.get_beta.get_beta", "modulename": "mlsauce.utils.get_beta", "qualname": "get_beta", "kind": "function", "doc": "

    \n", "signature": "(X, y):", "funcdef": "def"}}, "docInfo": {"mlsauce": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 277}, "mlsauce.AdaOpt.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 245, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.n_iterations": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.learning_rate": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.reg_lambda": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.reg_alpha": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.eta": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.gamma": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.k": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.tolerance": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.n_clusters": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.batch_size": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.row_sample": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.type_dist": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.n_jobs": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.cache": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.verbose": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.n_clusters_input": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.clustering_method": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.cluster_scaling": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.seed": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 73}, "mlsauce.AdaOpt.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.AdaOpt.predict_proba": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "mlsauce.AdaOpt.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.LSBoostClassifier": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 237}, "mlsauce.LSBoostClassifier.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 248, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.n_estimators": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.learning_rate": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.n_hidden_features": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.reg_lambda": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.alpha": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.row_sample": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.col_sample": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.dropout": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.tolerance": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.direct_link": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.verbose": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.seed": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.backend": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.obj": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.solver": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.activation": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.n_clusters": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.clustering_method": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.cluster_scaling": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.degree": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.poly_": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.LSBoostClassifier.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.LSBoostClassifier.predict_proba": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "mlsauce.LSBoostClassifier.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.StumpClassifier": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 23}, "mlsauce.StumpClassifier.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 3}, "mlsauce.StumpClassifier.bins": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.StumpClassifier.obj": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.StumpClassifier.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 71}, "mlsauce.StumpClassifier.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.StumpClassifier.predict_proba": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "mlsauce.StumpClassifier.set_fit_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.StumpClassifier.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.ElasticNetRegressor": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 44}, "mlsauce.ElasticNetRegressor.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 3}, "mlsauce.ElasticNetRegressor.reg_lambda": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.ElasticNetRegressor.alpha": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.ElasticNetRegressor.backend": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.ElasticNetRegressor.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.ElasticNetRegressor.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.ElasticNetRegressor.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.LassoRegressor": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 48}, "mlsauce.LassoRegressor.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 52, "bases": 0, "doc": 3}, "mlsauce.LassoRegressor.reg_lambda": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LassoRegressor.max_iter": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LassoRegressor.tol": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LassoRegressor.backend": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LassoRegressor.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.LassoRegressor.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.LassoRegressor.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.LSBoostRegressor": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 286}, "mlsauce.LSBoostRegressor.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 282, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.n_estimators": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.learning_rate": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.n_hidden_features": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.reg_lambda": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.alpha": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.row_sample": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.col_sample": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.dropout": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.tolerance": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.direct_link": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.verbose": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.seed": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.backend": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.obj": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.solver": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.activation": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.type_pi": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.replications": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.kernel": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.n_clusters": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.clustering_method": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.cluster_scaling": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.degree": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.poly_": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.LSBoostRegressor.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 89}, "mlsauce.LSBoostRegressor.set_predict_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.LSBoostRegressor.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.RidgeRegressor": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 28}, "mlsauce.RidgeRegressor.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 3}, "mlsauce.RidgeRegressor.reg_lambda": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.RidgeRegressor.backend": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.RidgeRegressor.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.RidgeRegressor.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.RidgeRegressor.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.download": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 62, "bases": 0, "doc": 3}, "mlsauce.get_config": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 57}, "mlsauce.set_config": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 54, "bases": 0, "doc": 273}, "mlsauce.config_context": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 486}, "mlsauce.adaopt": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 277}, "mlsauce.adaopt.AdaOpt.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 245, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.n_iterations": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.learning_rate": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.eta": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.gamma": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.k": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.tolerance": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.n_clusters": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.batch_size": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.row_sample": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.type_dist": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.n_jobs": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.cache": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.verbose": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.clustering_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.seed": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 73}, "mlsauce.adaopt.AdaOpt.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.adaopt.AdaOpt.predict_proba": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "mlsauce.adaopt.AdaOpt.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.booster": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 237}, "mlsauce.booster.LSBoostClassifier.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 248, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.alpha": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.row_sample": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.col_sample": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.dropout": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.tolerance": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.direct_link": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.verbose": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.seed": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.backend": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.obj": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.solver": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.activation": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.degree": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.poly_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.booster.LSBoostClassifier.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.booster.LSBoostRegressor": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 286}, "mlsauce.booster.LSBoostRegressor.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 282, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.alpha": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.row_sample": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.col_sample": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.dropout": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.tolerance": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.direct_link": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.verbose": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.seed": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.backend": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.obj": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.solver": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.activation": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.type_pi": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.replications": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.kernel": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.degree": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.poly_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.booster.LSBoostRegressor.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 89}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.datasets": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.datasets.dowload": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.datasets.dowload.download": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 62, "bases": 0, "doc": 3}, "mlsauce.demo": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.elasticnet": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.elasticnet.ElasticNetRegressor": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 44}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 3}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.lasso": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lasso.LassoRegressor": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 48}, "mlsauce.lasso.LassoRegressor.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 52, "bases": 0, "doc": 3}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lasso.LassoRegressor.max_iter": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lasso.LassoRegressor.tol": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lasso.LassoRegressor.backend": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lasso.LassoRegressor.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.lasso.LassoRegressor.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.lasso.LassoRegressor.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.nonconformist.AbsErrorErrFunc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 32}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 65}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 69}, "mlsauce.nonconformist.QuantileRegErrFunc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 30}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 65}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 69}, "mlsauce.nonconformist.RegressorAdapter": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 675}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.RegressorNc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 102}, "mlsauce.nonconformist.RegressorNc.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNc.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 193}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.RegressorNormalizer": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 675}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNormalizer.score": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.IcpRegressor": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 8, "doc": 748}, "mlsauce.nonconformist.IcpRegressor.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 3}, "mlsauce.nonconformist.IcpRegressor.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 161}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.predictioninterval": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 100}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 100, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.obj": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.method": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.level": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.replications": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.agg": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.seed": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 57}, "mlsauce.predictioninterval.PredictionInterval.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 27, "bases": 0, "doc": 75}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.ridge": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.ridge.RidgeRegressor": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 28}, "mlsauce.ridge.RidgeRegressor.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 3}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.ridge.RidgeRegressor.backend": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.ridge.RidgeRegressor.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.ridge.RidgeRegressor.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.setup": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.stump": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.stump.StumpClassifier": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 23}, "mlsauce.stump.StumpClassifier.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 3}, "mlsauce.stump.StumpClassifier.bins": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.stump.StumpClassifier.obj": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.stump.StumpClassifier.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 71}, "mlsauce.stump.StumpClassifier.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.stump.StumpClassifier.predict_proba": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "mlsauce.stump.StumpClassifier.set_fit_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.stump.StumpClassifier.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.utils": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.utils.cluster": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 111, "bases": 0, "doc": 3}, "mlsauce.utils.subsample": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 3}, "mlsauce.utils.merge_two_dicts": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "mlsauce.utils.flatten": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "mlsauce.utils.is_float": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "mlsauce.utils.is_factor": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "mlsauce.utils.Progbar": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 82}, "mlsauce.utils.Progbar.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 51, "bases": 0, "doc": 3}, "mlsauce.utils.Progbar.target": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.utils.Progbar.width": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.utils.Progbar.verbose": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.utils.Progbar.interval": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.utils.Progbar.update": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 57}, "mlsauce.utils.Progbar.add": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "mlsauce.utils.get_beta": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.utils.get_beta.get_beta": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}}, "length": 316, "save": true}, "index": {"qualname": {"root": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 31, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.AdaOpt.eta": {"tf": 1}, "mlsauce.AdaOpt.gamma": {"tf": 1}, "mlsauce.AdaOpt.k": {"tf": 1}, "mlsauce.AdaOpt.tolerance": {"tf": 1}, "mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.AdaOpt.cache": {"tf": 1}, "mlsauce.AdaOpt.verbose": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.AdaOpt.seed": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.adaopt.AdaOpt.eta": {"tf": 1}, "mlsauce.adaopt.AdaOpt.gamma": {"tf": 1}, "mlsauce.adaopt.AdaOpt.k": {"tf": 1}, "mlsauce.adaopt.AdaOpt.tolerance": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cache": {"tf": 1}, "mlsauce.adaopt.AdaOpt.verbose": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.adaopt.AdaOpt.seed": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}}, "df": 50}}}}, "d": {"docs": {"mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1}}, "df": 9}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1}}, "df": 4}}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.predictioninterval.PredictionInterval.agg": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 20}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar.interval": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1}}, "df": 2}}}}}}}}}, "c": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}}, "df": 5}}}}}}}}}}}, "s": {"docs": {"mlsauce.utils.is_float": {"tf": 1}, "mlsauce.utils.is_factor": {"tf": 1}}, "df": 2}}, "n": {"docs": {"mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}}, "df": 20, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}}, "df": 6}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.predictioninterval.PredictionInterval.level": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}}, "df": 12}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.LassoRegressor.tol": {"tf": 1}, "mlsauce.LassoRegressor.backend": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}}, "df": 18}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}}, "df": 54}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}}, "df": 60}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}}, "df": 6}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}}, "df": 14, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}}, "df": 4}}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}}, "df": 6}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}}, "df": 9}}}}}}}}}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.replications": {"tf": 1}}, "df": 3}}}}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}}, "df": 3}}}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}}, "df": 6}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.backend": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}}, "df": 14}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.eta": {"tf": 1}, "mlsauce.adaopt.AdaOpt.eta": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}}, "df": 4}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}}, "df": 16}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.gamma": {"tf": 1}, "mlsauce.adaopt.AdaOpt.gamma": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1}}, "df": 3}}}, "k": {"docs": {"mlsauce.AdaOpt.k": {"tf": 1}, "mlsauce.adaopt.AdaOpt.k": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LassoRegressor.tol": {"tf": 1}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.tolerance": {"tf": 1}, "mlsauce.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.adaopt.AdaOpt.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1}}, "df": 6}}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1}}, "df": 5}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.utils.merge_two_dicts": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.Progbar.target": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 7, "s": {"docs": {"mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}}, "df": 8}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}}, "df": 6}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.cache": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cache": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}}, "df": 3}}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}}, "df": 4}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 3}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.LassoRegressor.backend": {"tf": 1}, "mlsauce.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.RidgeRegressor.backend": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1}}, "df": 10}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.StumpClassifier.bins": {"tf": 1}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}}, "df": 10}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}}, "df": 6}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}}, "df": 1}, "r": {"docs": {"mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 18}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.seed": {"tf": 1}, "mlsauce.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.adaopt.AdaOpt.seed": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.seed": {"tf": 1}}, "df": 7}}, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 30}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1}}, "df": 4}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.StumpClassifier.bins": {"tf": 1}, "mlsauce.StumpClassifier.obj": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 18}}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.subsample": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.utils.merge_two_dicts": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1}}, "df": 2}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.verbose": {"tf": 1}, "mlsauce.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.adaopt.AdaOpt.verbose": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.utils.Progbar.verbose": {"tf": 1}}, "df": 7}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.method": {"tf": 1}}, "df": 7}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.merge_two_dicts": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}}, "df": 2}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}}, "df": 22}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}}, "df": 4}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.utils.flatten": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.is_float": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.is_factor": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 29, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.obj": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.method": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.level": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.replications": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.agg": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.seed": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}}, "df": 21}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 6}}, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}, "mlsauce.utils.Progbar.target": {"tf": 1}, "mlsauce.utils.Progbar.width": {"tf": 1}, "mlsauce.utils.Progbar.verbose": {"tf": 1}, "mlsauce.utils.Progbar.interval": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 8}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}}, "df": 4}}}, "i": {"docs": {"mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1}}, "df": 3}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}}, "df": 4}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {"mlsauce.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.StumpClassifier.obj": {"tf": 1}, "mlsauce.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.obj": {"tf": 1}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1}}, "df": 7}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.utils.Progbar.width": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1}}}}}}}}, "fullname": {"root": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 31, "m": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce": {"tf": 1}, "mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.AdaOpt.eta": {"tf": 1}, "mlsauce.AdaOpt.gamma": {"tf": 1}, "mlsauce.AdaOpt.k": {"tf": 1}, "mlsauce.AdaOpt.tolerance": {"tf": 1}, "mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.AdaOpt.cache": {"tf": 1}, "mlsauce.AdaOpt.verbose": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.AdaOpt.seed": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.StumpClassifier.bins": {"tf": 1}, "mlsauce.StumpClassifier.obj": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.LassoRegressor.tol": {"tf": 1}, "mlsauce.LassoRegressor.backend": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.backend": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.download": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.adaopt.AdaOpt.eta": {"tf": 1}, "mlsauce.adaopt.AdaOpt.gamma": {"tf": 1}, "mlsauce.adaopt.AdaOpt.k": {"tf": 1}, "mlsauce.adaopt.AdaOpt.tolerance": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cache": {"tf": 1}, "mlsauce.adaopt.AdaOpt.verbose": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.adaopt.AdaOpt.seed": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.datasets": {"tf": 1}, "mlsauce.datasets.dowload": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}, "mlsauce.demo": {"tf": 1}, "mlsauce.elasticnet": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.obj": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.method": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.level": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.replications": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.agg": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.seed": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.setup": {"tf": 1}, "mlsauce.stump": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}, "mlsauce.utils.merge_two_dicts": {"tf": 1}, "mlsauce.utils.flatten": {"tf": 1}, "mlsauce.utils.is_float": {"tf": 1}, "mlsauce.utils.is_factor": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}, "mlsauce.utils.Progbar.target": {"tf": 1}, "mlsauce.utils.Progbar.width": {"tf": 1}, "mlsauce.utils.Progbar.verbose": {"tf": 1}, "mlsauce.utils.Progbar.interval": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}, "mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1}}, "df": 316}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.method": {"tf": 1}}, "df": 7}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.merge_two_dicts": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.AdaOpt.eta": {"tf": 1}, "mlsauce.AdaOpt.gamma": {"tf": 1}, "mlsauce.AdaOpt.k": {"tf": 1}, "mlsauce.AdaOpt.tolerance": {"tf": 1}, "mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.AdaOpt.cache": {"tf": 1}, "mlsauce.AdaOpt.verbose": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.AdaOpt.seed": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.adaopt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.eta": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.gamma": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.k": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.tolerance": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.cache": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.verbose": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.seed": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}}, "df": 51}}}}, "d": {"docs": {"mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1}}, "df": 9}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1}}, "df": 4}}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.predictioninterval.PredictionInterval.agg": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 20}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar.interval": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1}}, "df": 2}}}}}}}}}, "c": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}}, "df": 5}}}}}}}}}}}, "s": {"docs": {"mlsauce.utils.is_float": {"tf": 1}, "mlsauce.utils.is_factor": {"tf": 1}}, "df": 2}}, "n": {"docs": {"mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}}, "df": 20, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}}, "df": 31}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}}, "df": 6}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.predictioninterval.PredictionInterval.level": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}}, "df": 12}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.lasso": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}}, "df": 10, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.LassoRegressor.tol": {"tf": 1}, "mlsauce.LassoRegressor.backend": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}}, "df": 18}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}}, "df": 54}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}}, "df": 60}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}}, "df": 6}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}}, "df": 14, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}}, "df": 4}}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}}, "df": 6}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}}, "df": 9}}}}}}}}}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.replications": {"tf": 1}}, "df": 3}}}}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}}, "df": 3}}}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}}, "df": 6}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.ridge": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}}, "df": 8, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.backend": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}}, "df": 14}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.eta": {"tf": 1}, "mlsauce.adaopt.AdaOpt.eta": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}}, "df": 4}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.elasticnet": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}}, "df": 9, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}}, "df": 16}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.gamma": {"tf": 1}, "mlsauce.adaopt.AdaOpt.gamma": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1.4142135623730951}}, "df": 3}}}, "k": {"docs": {"mlsauce.AdaOpt.k": {"tf": 1}, "mlsauce.adaopt.AdaOpt.k": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LassoRegressor.tol": {"tf": 1}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.tolerance": {"tf": 1}, "mlsauce.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.adaopt.AdaOpt.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1}}, "df": 6}}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1}}, "df": 5}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.utils.merge_two_dicts": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.Progbar.target": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 7, "s": {"docs": {"mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}}, "df": 8}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}}, "df": 6}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.cache": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cache": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}}, "df": 3}}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}}, "df": 4}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 3}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.LassoRegressor.backend": {"tf": 1}, "mlsauce.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.RidgeRegressor.backend": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1}}, "df": 10}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.StumpClassifier.bins": {"tf": 1}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.booster": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}}, "df": 58}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1.4142135623730951}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}}, "df": 10}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}}, "df": 6}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}}, "df": 1}, "r": {"docs": {"mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 18}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.seed": {"tf": 1}, "mlsauce.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.adaopt.AdaOpt.seed": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.seed": {"tf": 1}}, "df": 7}}, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 30, "u": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.setup": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1}}, "df": 4}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.stump": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 10, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.StumpClassifier.bins": {"tf": 1}, "mlsauce.StumpClassifier.obj": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 18}}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.subsample": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.utils.merge_two_dicts": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1}}, "df": 4}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.demo": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.datasets.dowload": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.datasets": {"tf": 1}, "mlsauce.datasets.dowload": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 3}}}}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1}}, "df": 2}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.verbose": {"tf": 1}, "mlsauce.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.adaopt.AdaOpt.verbose": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.utils.Progbar.verbose": {"tf": 1}}, "df": 7}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}}, "df": 22}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}}, "df": 4}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.utils.flatten": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.is_float": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.is_factor": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 29, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.predictioninterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.obj": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.method": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.level": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.replications": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.agg": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.seed": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}}, "df": 22}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 6}}, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}, "mlsauce.utils.Progbar.target": {"tf": 1}, "mlsauce.utils.Progbar.width": {"tf": 1}, "mlsauce.utils.Progbar.verbose": {"tf": 1}, "mlsauce.utils.Progbar.interval": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 8}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}}, "df": 4}}}, "i": {"docs": {"mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1}}, "df": 3}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}}, "df": 4}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {"mlsauce.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.StumpClassifier.obj": {"tf": 1}, "mlsauce.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.obj": {"tf": 1}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1}}, "df": 7}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.utils": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}, "mlsauce.utils.merge_two_dicts": {"tf": 1}, "mlsauce.utils.flatten": {"tf": 1}, "mlsauce.utils.is_float": {"tf": 1}, "mlsauce.utils.is_factor": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}, "mlsauce.utils.Progbar.target": {"tf": 1}, "mlsauce.utils.Progbar.width": {"tf": 1}, "mlsauce.utils.Progbar.verbose": {"tf": 1}, "mlsauce.utils.Progbar.interval": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}, "mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1}}, "df": 17}}}}, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.utils.Progbar.width": {"tf": 1}}, "df": 1}}}}}}}, "annotation": {"root": {"docs": {}, "df": 0}}, "default_value": {"root": {"docs": {}, "df": 0}}, "signature": {"root": {"0": {"0": {"0": {"1": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}, "docs": {}, "df": 0}, "1": {"docs": {"mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "1": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1.4142135623730951}}, "df": 2}, "5": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}, "6": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}, "docs": {"mlsauce.AdaOpt.__init__": {"tf": 3.1622776601683795}, "mlsauce.LSBoostClassifier.__init__": {"tf": 2.6457513110645907}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.__init__": {"tf": 2.6457513110645907}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 2.6457513110645907}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 14}, "1": {"0": {"0": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 6}, "docs": {"mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}}, "df": 2}, "2": {"3": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}}, "df": 9}, "docs": {}, "df": 0}, "docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 2.449489742783178}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 2.449489742783178}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 2.449489742783178}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 13, "e": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}, "3": {"0": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}, "9": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 2.449489742783178}, "mlsauce.LSBoostClassifier.__init__": {"tf": 3.1622776601683795}, "mlsauce.StumpClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.__init__": {"tf": 3.1622776601683795}, "mlsauce.RidgeRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.download": {"tf": 2.449489742783178}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 3.1622776601683795}, "mlsauce.datasets.dowload.download": {"tf": 2.449489742783178}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 2.449489742783178}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.utils.cluster": {"tf": 2}}, "df": 18}, "docs": {"mlsauce.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1.4142135623730951}}, "df": 2}, "5": {"0": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}, "docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}}, "df": 8}, "8": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}}, "df": 3}, "9": {"5": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {"mlsauce.AdaOpt.__init__": {"tf": 13.45362404707371}, "mlsauce.AdaOpt.fit": {"tf": 4.898979485566356}, "mlsauce.AdaOpt.predict": {"tf": 4.47213595499958}, "mlsauce.AdaOpt.predict_proba": {"tf": 4.47213595499958}, "mlsauce.AdaOpt.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LSBoostClassifier.__init__": {"tf": 13.601470508735444}, "mlsauce.LSBoostClassifier.fit": {"tf": 4.898979485566356}, "mlsauce.LSBoostClassifier.predict": {"tf": 4.47213595499958}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 4.47213595499958}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.StumpClassifier.__init__": {"tf": 3.7416573867739413}, "mlsauce.StumpClassifier.fit": {"tf": 5.656854249492381}, "mlsauce.StumpClassifier.predict": {"tf": 4.47213595499958}, "mlsauce.StumpClassifier.predict_proba": {"tf": 4.47213595499958}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.StumpClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 5.477225575051661}, "mlsauce.ElasticNetRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.ElasticNetRegressor.predict": {"tf": 4.47213595499958}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LassoRegressor.__init__": {"tf": 6.164414002968976}, "mlsauce.LassoRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.LassoRegressor.predict": {"tf": 4.47213595499958}, "mlsauce.LassoRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LSBoostRegressor.__init__": {"tf": 14.560219778561036}, "mlsauce.LSBoostRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.LSBoostRegressor.predict": {"tf": 6}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.RidgeRegressor.__init__": {"tf": 4.69041575982343}, "mlsauce.RidgeRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.RidgeRegressor.predict": {"tf": 4.47213595499958}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.download": {"tf": 6.782329983125268}, "mlsauce.get_config": {"tf": 2.6457513110645907}, "mlsauce.set_config": {"tf": 6.48074069840786}, "mlsauce.config_context": {"tf": 3.4641016151377544}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 13.45362404707371}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 4.898979485566356}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 4.47213595499958}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 4.47213595499958}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 13.601470508735444}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 4.898979485566356}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 4.47213595499958}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 4.47213595499958}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 14.560219778561036}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 6}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.datasets.dowload.download": {"tf": 6.782329983125268}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 5.477225575051661}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 4.47213595499958}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 6.164414002968976}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 4.47213595499958}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 4.242640687119285}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 4.242640687119285}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 4.242640687119285}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 4.242640687119285}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 4}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 7.280109889280518}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 5.0990195135927845}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 4}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 4.242640687119285}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 4.69041575982343}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 4}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 4.69041575982343}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 8.831760866327848}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 4.242640687119285}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 4.69041575982343}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 4.69041575982343}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 4.47213595499958}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 3.7416573867739413}, "mlsauce.stump.StumpClassifier.fit": {"tf": 5.656854249492381}, "mlsauce.stump.StumpClassifier.predict": {"tf": 4.47213595499958}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 4.47213595499958}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.utils.cluster": {"tf": 9.327379053088816}, "mlsauce.utils.subsample": {"tf": 5.0990195135927845}, "mlsauce.utils.merge_two_dicts": {"tf": 3.7416573867739413}, "mlsauce.utils.flatten": {"tf": 3.1622776601683795}, "mlsauce.utils.is_float": {"tf": 3.1622776601683795}, "mlsauce.utils.is_factor": {"tf": 3.1622776601683795}, "mlsauce.utils.Progbar.__init__": {"tf": 6.324555320336759}, "mlsauce.utils.Progbar.update": {"tf": 4.69041575982343}, "mlsauce.utils.Progbar.add": {"tf": 4.69041575982343}, "mlsauce.utils.get_beta": {"tf": 3.7416573867739413}, "mlsauce.utils.get_beta.get_beta": {"tf": 3.7416573867739413}}, "df": 108, "n": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 2}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.utils.cluster": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 8, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.set_config": {"tf": 2}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 2}, "mlsauce.utils.Progbar.__init__": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 20}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}}, "df": 2}}}}}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}, "c": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}}, "df": 5}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}}}}}}}}, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {"mlsauce.utils.flatten": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 6}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}}, "df": 12}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.cluster": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}}}, "t": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}, "r": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 6}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}}, "df": 12}, "l": {"docs": {}, "df": 0, "u": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 3}}}}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}}, "df": 7}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}}, "df": 8}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "g": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.cluster": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}, "k": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 7}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.download": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 36}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 3}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 6}}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.utils.cluster": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 6, "s": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 7}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 6}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.cluster": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}}, "df": 10}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}}, "df": 10}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 4}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}}, "df": 9}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 7}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.cluster": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 7}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}}, "df": 9}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 46}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}}}}, "v": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 7}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 2}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 10}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}}, "df": 2}, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1.4142135623730951}}, "df": 3}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}}}}}}, "x": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}, "mlsauce.utils.merge_two_dicts": {"tf": 1}, "mlsauce.utils.is_float": {"tf": 1}, "mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1}}, "df": 45}, "y": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}, "mlsauce.utils.merge_two_dicts": {"tf": 1}, "mlsauce.utils.is_factor": {"tf": 1}, "mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1}}, "df": 24}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 4}, "k": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}}, "df": 2}}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {"mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "bases": {"root": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier": {"tf": 1.4142135623730951}}, "df": 15}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier": {"tf": 1.4142135623730951}}, "df": 17, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}}, "df": 15}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 10}}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 6}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 6}}}}}}}}}}}}, "c": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}, "doc": {"root": {"0": {"1": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}}, "df": 2}, "2": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}}, "df": 2}, "3": {"6": {"2": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.set_config": {"tf": 3.3166247903554}, "mlsauce.config_context": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.8284271247461903}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2.8284271247461903}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 18}, "1": {"0": {"2": {"4": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "1": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "4": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "5": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "6": {"0": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 29}, "docs": {}, "df": 0}, "docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 47}, "2": {"0": {"0": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}, "docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "7": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "9": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 37}, "3": {"1": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "6": {"2": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}, "docs": {}, "df": 0}, "9": {"docs": {"mlsauce.config_context": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2.449489742783178}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2.449489742783178}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 34, "d": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 2}}, "4": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}, "5": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 2}, "6": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 1}, "8": {"6": {"1": {"7": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 29}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "9": {"5": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 3}, "9": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"mlsauce": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt": {"tf": 3.1622776601683795}, "mlsauce.AdaOpt.__init__": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.n_iterations": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.learning_rate": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.reg_alpha": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.eta": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.gamma": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.k": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.tolerance": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.n_clusters": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.batch_size": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.row_sample": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.type_dist": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.n_jobs": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.cache": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.verbose": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.clustering_method": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.cluster_scaling": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.seed": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.fit": {"tf": 4.123105625617661}, "mlsauce.AdaOpt.predict": {"tf": 4.123105625617661}, "mlsauce.AdaOpt.predict_proba": {"tf": 4.123105625617661}, "mlsauce.AdaOpt.set_score_request": {"tf": 9}, "mlsauce.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.n_estimators": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.alpha": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.col_sample": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.dropout": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.tolerance": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.direct_link": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.verbose": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.seed": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.backend": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.obj": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.solver": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.activation": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.degree": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.poly_": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.fit": {"tf": 4.123105625617661}, "mlsauce.LSBoostClassifier.predict": {"tf": 4.123105625617661}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 4.123105625617661}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 9}, "mlsauce.StumpClassifier": {"tf": 3.1622776601683795}, "mlsauce.StumpClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.bins": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.obj": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.fit": {"tf": 4.123105625617661}, "mlsauce.StumpClassifier.predict": {"tf": 4.123105625617661}, "mlsauce.StumpClassifier.predict_proba": {"tf": 4.123105625617661}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 9}, "mlsauce.StumpClassifier.set_score_request": {"tf": 9}, "mlsauce.ElasticNetRegressor": {"tf": 3.1622776601683795}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.alpha": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.ElasticNetRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 9}, "mlsauce.LassoRegressor": {"tf": 3.1622776601683795}, "mlsauce.LassoRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.max_iter": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.tol": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.LassoRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.LassoRegressor.set_score_request": {"tf": 9}, "mlsauce.LSBoostRegressor": {"tf": 3.3166247903554}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.alpha": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.dropout": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.tolerance": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.verbose": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.seed": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.obj": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.solver": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.activation": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.type_pi": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.replications": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.kernel": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.degree": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.LSBoostRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 9}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 9}, "mlsauce.RidgeRegressor": {"tf": 3.1622776601683795}, "mlsauce.RidgeRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.RidgeRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 9}, "mlsauce.download": {"tf": 1.7320508075688772}, "mlsauce.get_config": {"tf": 4.242640687119285}, "mlsauce.set_config": {"tf": 7.615773105863909}, "mlsauce.config_context": {"tf": 14}, "mlsauce.adaopt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 3.1622776601683795}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.eta": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.gamma": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.k": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.tolerance": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.cache": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.verbose": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.seed": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 4.123105625617661}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 4.123105625617661}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 4.123105625617661}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 9}, "mlsauce.booster": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 4.123105625617661}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 4.123105625617661}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 4.123105625617661}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 9}, "mlsauce.booster.LSBoostRegressor": {"tf": 3.3166247903554}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 9}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 9}, "mlsauce.datasets": {"tf": 1.7320508075688772}, "mlsauce.datasets.dowload": {"tf": 1.7320508075688772}, "mlsauce.datasets.dowload.download": {"tf": 1.7320508075688772}, "mlsauce.demo": {"tf": 1.7320508075688772}, "mlsauce.elasticnet": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 3.1622776601683795}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 9}, "mlsauce.lasso": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor": {"tf": 3.1622776601683795}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 9}, "mlsauce.nonconformist": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 3.3166247903554}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 4.358898943540674}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 4.358898943540674}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 3}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 4.358898943540674}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 4.358898943540674}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 21.61018278497431}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 9}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 9}, "mlsauce.nonconformist.RegressorNc": {"tf": 5.916079783099616}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 5.0990195135927845}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 9}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 9}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 9}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 21.61018278497431}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 9}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 9}, "mlsauce.nonconformist.IcpRegressor": {"tf": 22.360679774997898}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 4.795831523312719}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 9}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 9}, "mlsauce.predictioninterval": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 3.3166247903554}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.obj": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.method": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.level": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.replications": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.agg": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.seed": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 3.605551275463989}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 3.1622776601683795}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 9}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 9}, "mlsauce.ridge": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor": {"tf": 3.1622776601683795}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 9}, "mlsauce.setup": {"tf": 1.7320508075688772}, "mlsauce.stump": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier": {"tf": 3.1622776601683795}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.fit": {"tf": 4.123105625617661}, "mlsauce.stump.StumpClassifier.predict": {"tf": 4.123105625617661}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 4.123105625617661}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 9}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 9}, "mlsauce.utils": {"tf": 1.7320508075688772}, "mlsauce.utils.cluster": {"tf": 1.7320508075688772}, "mlsauce.utils.subsample": {"tf": 1.7320508075688772}, "mlsauce.utils.merge_two_dicts": {"tf": 1.7320508075688772}, "mlsauce.utils.flatten": {"tf": 1.7320508075688772}, "mlsauce.utils.is_float": {"tf": 1.7320508075688772}, "mlsauce.utils.is_factor": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar": {"tf": 3.1622776601683795}, "mlsauce.utils.Progbar.__init__": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.target": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.width": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.verbose": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.interval": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.update": {"tf": 3.4641016151377544}, "mlsauce.utils.Progbar.add": {"tf": 1.7320508075688772}, "mlsauce.utils.get_beta": {"tf": 1.7320508075688772}, "mlsauce.utils.get_beta.get_beta": {"tf": 1.7320508075688772}}, "df": 316, "a": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.StumpClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LassoRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 2.23606797749979}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 41, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}}, "df": 4}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 32}}}}}}}}}, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 3.1622776601683795}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 10, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}}, "df": 17}}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}}, "df": 8}}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 5}}, "l": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 7, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 43, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 2}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.config_context": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 38}, "g": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 38}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 4}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}}, "df": 45, "s": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 5, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 2}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.449489742783178}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 83}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}}}, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1, "d": {"docs": {"mlsauce.utils.Progbar": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}}}}, "c": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 34, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}}, "df": 14}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 2}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 6}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 2.23606797749979}, "mlsauce.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.23606797749979}}, "df": 6}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 2}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 6}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.get_config": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 2.449489742783178}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}}, "df": 3}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 2}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 2}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 3}}}}}, "g": {"docs": {"mlsauce.get_config": {"tf": 2.23606797749979}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 2.23606797749979}}, "df": 3, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.get_config": {"tf": 1.7320508075688772}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 1.7320508075688772}}, "df": 3}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 1}}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 1}}}}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 20}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}}, "df": 6}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1}}}}}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}}, "df": 2}}}}}}}}}, "l": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 8}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor": {"tf": 2.449489742783178}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.449489742783178}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}}, "df": 7}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 2.6457513110645907}}, "df": 1, "c": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 4, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}, "s": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 4}}}, "e": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 4, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 5}}, "p": {"docs": {}, "df": 0, "u": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 10, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29, "d": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 29}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 2}, "mlsauce.AdaOpt.fit": {"tf": 2.23606797749979}, "mlsauce.AdaOpt.predict": {"tf": 2}, "mlsauce.AdaOpt.predict_proba": {"tf": 2}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.fit": {"tf": 2.23606797749979}, "mlsauce.LSBoostClassifier.predict": {"tf": 2}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 2}, "mlsauce.StumpClassifier.fit": {"tf": 2.449489742783178}, "mlsauce.StumpClassifier.predict": {"tf": 2}, "mlsauce.StumpClassifier.predict_proba": {"tf": 2}, "mlsauce.ElasticNetRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.ElasticNetRegressor.predict": {"tf": 2}, "mlsauce.LassoRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.LassoRegressor.predict": {"tf": 2}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor.predict": {"tf": 2}, "mlsauce.RidgeRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.RidgeRegressor.predict": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 2}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 2}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 2}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 2}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 2}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 2}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 2}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 2}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 2}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 2}, "mlsauce.stump.StumpClassifier.fit": {"tf": 2.449489742783178}, "mlsauce.stump.StumpClassifier.predict": {"tf": 2}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 2}}, "df": 49, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 2.23606797749979}, "mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 2}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 50}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier": {"tf": 1}}, "df": 11}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}}, "df": 2}}}}}}}, "w": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 31}, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 8, "n": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 3, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 12}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc": {"tf": 2}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2}}, "df": 9}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}}}, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 9, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 32}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}, "d": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 30, "s": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 4}}}, "n": {"docs": {"mlsauce.config_context": {"tf": 1.7320508075688772}}, "df": 1}}, "c": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2.6457513110645907}}, "df": 5}, "p": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 3}}, "i": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 3, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 8}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 2.449489742783178}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 2.8284271247461903}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 3.4641016151377544}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 2.6457513110645907}, "mlsauce.config_context": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 2.449489742783178}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.8284271247461903}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 3.4641016151377544}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 53, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 2.8284271247461903}, "mlsauce.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 2.6457513110645907}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 2.8284271247461903}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2}, "mlsauce.stump.StumpClassifier": {"tf": 1}}, "df": 15, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1.4142135623730951}}, "df": 9, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 4}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 4, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 3}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4, "d": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}}, "df": 2}}}, "f": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 2.449489742783178}, "mlsauce.config_context": {"tf": 2.449489742783178}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 42}, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 82}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2.449489742783178}}, "df": 4}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}, "x": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 2.8284271247461903}}, "df": 1}}, "c": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 2.23606797749979}}, "df": 1, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "f": {"docs": {"mlsauce.AdaOpt": {"tf": 3}, "mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.StumpClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LassoRegressor": {"tf": 2}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor": {"tf": 3.3166247903554}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.set_config": {"tf": 2}, "mlsauce.config_context": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 3}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor": {"tf": 3.3166247903554}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.lasso.LassoRegressor": {"tf": 2}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 2.23606797749979}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 2.23606797749979}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2.449489742783178}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 2.23606797749979}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.utils.Progbar": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.update": {"tf": 1.7320508075688772}}, "df": 93, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 2}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.set_config": {"tf": 2}, "mlsauce.config_context": {"tf": 2}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}}}, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 14, "g": {"docs": {}, "df": 0, "/": {"3": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}}}}}}}}}}}}}}}}, "docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}}, "df": 17}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}}, "df": 2}}}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 3, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 4}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}}, "df": 6, "s": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1, "s": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 3.3166247903554}, "mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LSBoostClassifier": {"tf": 2.8284271247461903}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.StumpClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt": {"tf": 3.3166247903554}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.8284271247461903}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 85, "i": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 3}}, "n": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}}, "df": 2}, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 34}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 6}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 2.8284271247461903}, "mlsauce.AdaOpt.fit": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 2.449489742783178}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 2.8284271247461903}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 41}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 2.449489742783178}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 42}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 3.1622776601683795}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 10}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.7320508075688772}}, "df": 25, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 2.23606797749979}}, "df": 2, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}}}, "o": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 76, "l": {"docs": {"mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 8}}}}}}}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 2.23606797749979}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.23606797749979}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 13}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 17}}}}, "n": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 10}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1, "s": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1}}}}}}, "l": {"1": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 10}, "2": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}}, "df": 8}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 6}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}}, "df": 9, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 12}}}}, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1.7320508075688772}}, "df": 6}}, "t": {"docs": {"mlsauce.config_context": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 2}}, "b": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}}, "df": 36}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 31}}, "n": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 3}}}}}}}}}}}}, "w": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 1}}}, "t": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 8}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 12, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 12}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 5, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 3, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}, "e": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 3}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 5, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 41}, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 31}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 7}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.7320508075688772}}, "df": 29, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}}}}}, "f": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 30}}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"6": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}, "docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 6}}}}}, "f": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 2.6457513110645907}, "mlsauce.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 2.6457513110645907}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.6457513110645907}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 19}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 3.605551275463989}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.get_config": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 2}, "mlsauce.config_context": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 3.605551275463989}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.8284271247461903}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.449489742783178}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 64}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 2}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 7}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2.23606797749979}}, "df": 10}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 2.6457513110645907}}, "df": 2, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "t": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.7320508075688772}}, "df": 48, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 5}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 3}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.predict": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 2}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 2}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.7320508075688772}}, "df": 45}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 1, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 2}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 2}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 2}, "mlsauce.StumpClassifier.set_score_request": {"tf": 2}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 2}, "mlsauce.LassoRegressor.set_score_request": {"tf": 2}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 2}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 2}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 2}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 2}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 2}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 2}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 2}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNc": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 2}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 2}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 2}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 2}}, "df": 40}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 5, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 4}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 3}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 6}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.7320508075688772}}, "df": 3, "s": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}}}}}, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 2.449489742783178}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 43, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}}, "df": 4}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2.23606797749979}}, "df": 5}}, "m": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2.6457513110645907}}, "df": 5}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}}, "f": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 2.449489742783178}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2.6457513110645907}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 26}}, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.get_config": {"tf": 2.23606797749979}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 65, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 5, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 7}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 39, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 2}, "mlsauce.AdaOpt.predict": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.fit": {"tf": 2}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.fit": {"tf": 2.23606797749979}, "mlsauce.StumpClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.fit": {"tf": 2}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.fit": {"tf": 2}, "mlsauce.LassoRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.fit": {"tf": 2}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.fit": {"tf": 2}, "mlsauce.RidgeRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 2}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 2}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 2}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 2}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 2}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 2}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.fit": {"tf": 2.23606797749979}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.7320508075688772}}, "df": 42}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 6}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 6}, "r": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 45}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 35}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}}, "df": 6}}}}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "v": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 1.7320508075688772}}, "df": 2}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}}, "df": 2, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2.6457513110645907}}, "df": 2, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 14, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 2}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 2}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 2}, "mlsauce.StumpClassifier.set_score_request": {"tf": 2}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 2}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 2}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 2}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 2}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 2}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 2}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 2}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 2}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 2}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 2}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 2}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 2}}, "df": 73}}}}}, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}}, "df": 2}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 33}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}}, "df": 3}}, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 2}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 28, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.4142135623730951}}, "df": 14, "s": {"docs": {"mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}}, "df": 15}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 1}}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 2}}, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 8}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}}, "df": 12, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 8}}}, "y": {"docs": {"mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 10}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.set_config": {"tf": 2}, "mlsauce.config_context": {"tf": 2}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}}, "df": 6}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 29}}}}}, "i": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 6}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}}}, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 31, "r": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 8, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}}, "df": 8}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 2}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 10}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2.449489742783178}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2.449489742783178}}, "df": 4, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 9}}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}}, "df": 6}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}}, "df": 2, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2}}, "df": 5}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 2}}}}}}}}}}, "g": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 29, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "v": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}, "p": {"docs": {}, "df": 0, "u": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 10}}, "t": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.config_context": {"tf": 3.4641016151377544}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 5.291502622129181}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 5.291502622129181}, "mlsauce.nonconformist.IcpRegressor": {"tf": 7.14142842854285}}, "df": 6}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.get_config": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 2.23606797749979}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 4, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 29}}}}}}}}, "f": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}}, "df": 2, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 41}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 2}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 6}}, "s": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.get_config": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 6}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}}, "df": 39, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}}, "k": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}}, "df": 2, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 34}}}}}, "e": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.get_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 30}, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 3}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 5}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}}}, "b": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.7320508075688772}}, "df": 39, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 30}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1, "s": {"docs": {"mlsauce.utils.Progbar": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1, "l": {"docs": {"mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 2.449489742783178}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}}, "df": 19}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 10}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}}, "df": 6}}}}}}}, "x": {"docs": {"mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}}, "df": 4}}}}, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "q": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.get_config": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 2.8284271247461903}}, "df": 3}}}}}}, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 8}, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 2}}}}}}}}, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1, "s": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}}}, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 8}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor": {"tf": 1.4142135623730951}}, "df": 10}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}, "y": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 35}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 35, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 3}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "s": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 3}}, "df": 1}}}}}, "e": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 2.6457513110645907}, "mlsauce.config_context": {"tf": 2.6457513110645907}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 80, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 9}}}}, "a": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 1}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.StumpClassifier": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier": {"tf": 1.4142135623730951}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}, "w": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 36}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 34}}}}, "n": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 2}}, "df": 2}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 31}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 31}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 31, "s": {"docs": {"mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.set_config": {"tf": 2.6457513110645907}, "mlsauce.config_context": {"tf": 2.8284271247461903}, "mlsauce.utils.Progbar": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 4}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 3}}, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.utils.Progbar": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1.7320508075688772}}, "df": 7}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 31}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 36}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 4, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 21}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}}, "df": 4}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}}, "df": 22, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}, "o": {"docs": {}, "df": 0, "u": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}}, "df": 2, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}, "x": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2.8284271247461903}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2.8284271247461903}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}}, "df": 41}, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}}, "w": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "w": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}}}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 31}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 4}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.StumpClassifier": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "g": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}}, "df": 1}, "q": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 1}}}}}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; + /** pdoc search index */const docs = {"version": "0.9.5", "fields": ["qualname", "fullname", "annotation", "default_value", "signature", "bases", "doc"], "ref": "fullname", "documentStore": {"docs": {"mlsauce": {"fullname": "mlsauce", "modulename": "mlsauce", "kind": "module", "doc": "

    \n"}, "mlsauce.AdaOpt": {"fullname": "mlsauce.AdaOpt", "modulename": "mlsauce", "qualname": "AdaOpt", "kind": "class", "doc": "

    AdaOpt classifier.

    \n\n

    Attributes:

    \n\n
    n_iterations: int\n    number of iterations of the optimizer at training time.\n\nlearning_rate: float\n    controls the speed of the optimizer at training time.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nreg_alpha: float\n    L1 regularization parameter for successive errors in the optimizer\n    (at training time).\n\neta: float\n    controls the slope in gradient descent (at training time).\n\ngamma: float\n    controls the step size in gradient descent (at training time).\n\nk: int\n    number of nearest neighbors selected at test time for classification.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\nn_clusters: int\n    number of clusters, if MiniBatch k-means is used at test time\n    (for faster prediction).\n\nbatch_size: int\n    size of the batch, if MiniBatch k-means is used at test time\n    (for faster prediction).\n\nrow_sample: float\n    percentage of rows chosen from training set (by stratified subsampling,\n    for faster prediction).\n\ntype_dist: str\n    distance used for finding the nearest neighbors; currently `euclidean-f`\n    (euclidean distances calculated as whole), `euclidean` (euclidean distances\n    calculated row by row), `cosine` (cosine distance).\n\nn_jobs: int\n    number of cpus for parallel processing (default: None)\n\nverbose: int\n    progress bar for parallel processing (yes = 1) or not (no = 0)\n\ncache: boolean\n    if the nearest neighbors are cached or not, for faster retrieval in\n    subsequent calls.\n\nn_clusters_input: int\n    number of clusters (a priori) for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin"}, "mlsauce.AdaOpt.__init__": {"fullname": "mlsauce.AdaOpt.__init__", "modulename": "mlsauce", "qualname": "AdaOpt.__init__", "kind": "function", "doc": "

    \n", "signature": "(\tn_iterations=50,\tlearning_rate=0.3,\treg_lambda=0.1,\treg_alpha=0.5,\teta=0.01,\tgamma=0.01,\tk=3,\ttolerance=0,\tn_clusters=0,\tbatch_size=100,\trow_sample=0.8,\ttype_dist='euclidean-f',\tn_jobs=None,\tverbose=0,\tcache=True,\tn_clusters_input=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tseed=123)"}, "mlsauce.AdaOpt.n_iterations": {"fullname": "mlsauce.AdaOpt.n_iterations", "modulename": "mlsauce", "qualname": "AdaOpt.n_iterations", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.learning_rate": {"fullname": "mlsauce.AdaOpt.learning_rate", "modulename": "mlsauce", "qualname": "AdaOpt.learning_rate", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.reg_lambda": {"fullname": "mlsauce.AdaOpt.reg_lambda", "modulename": "mlsauce", "qualname": "AdaOpt.reg_lambda", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.reg_alpha": {"fullname": "mlsauce.AdaOpt.reg_alpha", "modulename": "mlsauce", "qualname": "AdaOpt.reg_alpha", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.eta": {"fullname": "mlsauce.AdaOpt.eta", "modulename": "mlsauce", "qualname": "AdaOpt.eta", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.gamma": {"fullname": "mlsauce.AdaOpt.gamma", "modulename": "mlsauce", "qualname": "AdaOpt.gamma", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.k": {"fullname": "mlsauce.AdaOpt.k", "modulename": "mlsauce", "qualname": "AdaOpt.k", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.tolerance": {"fullname": "mlsauce.AdaOpt.tolerance", "modulename": "mlsauce", "qualname": "AdaOpt.tolerance", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.n_clusters": {"fullname": "mlsauce.AdaOpt.n_clusters", "modulename": "mlsauce", "qualname": "AdaOpt.n_clusters", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.batch_size": {"fullname": "mlsauce.AdaOpt.batch_size", "modulename": "mlsauce", "qualname": "AdaOpt.batch_size", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.row_sample": {"fullname": "mlsauce.AdaOpt.row_sample", "modulename": "mlsauce", "qualname": "AdaOpt.row_sample", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.type_dist": {"fullname": "mlsauce.AdaOpt.type_dist", "modulename": "mlsauce", "qualname": "AdaOpt.type_dist", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.n_jobs": {"fullname": "mlsauce.AdaOpt.n_jobs", "modulename": "mlsauce", "qualname": "AdaOpt.n_jobs", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.cache": {"fullname": "mlsauce.AdaOpt.cache", "modulename": "mlsauce", "qualname": "AdaOpt.cache", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.verbose": {"fullname": "mlsauce.AdaOpt.verbose", "modulename": "mlsauce", "qualname": "AdaOpt.verbose", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.n_clusters_input": {"fullname": "mlsauce.AdaOpt.n_clusters_input", "modulename": "mlsauce", "qualname": "AdaOpt.n_clusters_input", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.clustering_method": {"fullname": "mlsauce.AdaOpt.clustering_method", "modulename": "mlsauce", "qualname": "AdaOpt.clustering_method", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.cluster_scaling": {"fullname": "mlsauce.AdaOpt.cluster_scaling", "modulename": "mlsauce", "qualname": "AdaOpt.cluster_scaling", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.seed": {"fullname": "mlsauce.AdaOpt.seed", "modulename": "mlsauce", "qualname": "AdaOpt.seed", "kind": "variable", "doc": "

    \n"}, "mlsauce.AdaOpt.fit": {"fullname": "mlsauce.AdaOpt.fit", "modulename": "mlsauce", "qualname": "AdaOpt.fit", "kind": "function", "doc": "

    Fit AdaOpt to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.AdaOpt.predict": {"fullname": "mlsauce.AdaOpt.predict", "modulename": "mlsauce", "qualname": "AdaOpt.predict", "kind": "function", "doc": "

    Predict test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
    \n\n

    Returns:

    \n\n
    model predictions: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.AdaOpt.predict_proba": {"fullname": "mlsauce.AdaOpt.predict_proba", "modulename": "mlsauce", "qualname": "AdaOpt.predict_proba", "kind": "function", "doc": "

    Predict probabilities for test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
    \n\n

    Returns:

    \n\n
    probability estimates for test data: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.AdaOpt.set_score_request": {"fullname": "mlsauce.AdaOpt.set_score_request", "modulename": "mlsauce", "qualname": "AdaOpt.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.LSBoostClassifier": {"fullname": "mlsauce.LSBoostClassifier", "modulename": "mlsauce", "qualname": "LSBoostClassifier", "kind": "class", "doc": "

    LSBoost classifier.

    \n\n

    Attributes:

    \n\n
    n_estimators: int\n    number of boosting iterations.\n\nlearning_rate: float\n    controls the learning speed at training time.\n\nn_hidden_features: int\n    number of nodes in successive hidden layers.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'.\n\nrow_sample: float\n    percentage of rows chosen from the training set.\n\ncol_sample: float\n    percentage of columns chosen from the training set.\n\ndropout: float\n    percentage of nodes dropped from the training set.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\ndirect_link: bool\n    indicates whether the original features are included (True) in model's\n    fitting or not (False).\n\nverbose: int\n    progress bar (yes = 1) or not (no = 0) (currently).\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n\nsolver: str\n    type of 'weak' learner; currently in ('ridge', 'lasso', 'enet').\n    'enet' is a combination of 'ridge' and 'lasso' called Elastic Net.\n\nactivation: str\n    activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'\n\nn_clusters: int\n    number of clusters for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\ndegree: int\n    degree of features interactions to include in the model\n\nweights_distr: str\n    distribution of weights for constructing the model's hidden layer;\n    currently 'uniform', 'gaussian'\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin"}, "mlsauce.LSBoostClassifier.__init__": {"fullname": "mlsauce.LSBoostClassifier.__init__", "modulename": "mlsauce", "qualname": "LSBoostClassifier.__init__", "kind": "function", "doc": "

    \n", "signature": "(\tn_estimators=100,\tlearning_rate=0.1,\tn_hidden_features=5,\treg_lambda=0.1,\talpha=0.5,\trow_sample=1,\tcol_sample=1,\tdropout=0,\ttolerance=0.0001,\tdirect_link=1,\tverbose=1,\tseed=123,\tbackend='cpu',\tsolver='ridge',\tactivation='relu',\tn_clusters=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tdegree=0,\tweights_distr='uniform')"}, "mlsauce.LSBoostClassifier.n_estimators": {"fullname": "mlsauce.LSBoostClassifier.n_estimators", "modulename": "mlsauce", "qualname": "LSBoostClassifier.n_estimators", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.learning_rate": {"fullname": "mlsauce.LSBoostClassifier.learning_rate", "modulename": "mlsauce", "qualname": "LSBoostClassifier.learning_rate", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.n_hidden_features": {"fullname": "mlsauce.LSBoostClassifier.n_hidden_features", "modulename": "mlsauce", "qualname": "LSBoostClassifier.n_hidden_features", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.reg_lambda": {"fullname": "mlsauce.LSBoostClassifier.reg_lambda", "modulename": "mlsauce", "qualname": "LSBoostClassifier.reg_lambda", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.alpha": {"fullname": "mlsauce.LSBoostClassifier.alpha", "modulename": "mlsauce", "qualname": "LSBoostClassifier.alpha", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.row_sample": {"fullname": "mlsauce.LSBoostClassifier.row_sample", "modulename": "mlsauce", "qualname": "LSBoostClassifier.row_sample", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.col_sample": {"fullname": "mlsauce.LSBoostClassifier.col_sample", "modulename": "mlsauce", "qualname": "LSBoostClassifier.col_sample", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.dropout": {"fullname": "mlsauce.LSBoostClassifier.dropout", "modulename": "mlsauce", "qualname": "LSBoostClassifier.dropout", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.tolerance": {"fullname": "mlsauce.LSBoostClassifier.tolerance", "modulename": "mlsauce", "qualname": "LSBoostClassifier.tolerance", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.direct_link": {"fullname": "mlsauce.LSBoostClassifier.direct_link", "modulename": "mlsauce", "qualname": "LSBoostClassifier.direct_link", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.verbose": {"fullname": "mlsauce.LSBoostClassifier.verbose", "modulename": "mlsauce", "qualname": "LSBoostClassifier.verbose", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.seed": {"fullname": "mlsauce.LSBoostClassifier.seed", "modulename": "mlsauce", "qualname": "LSBoostClassifier.seed", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.backend": {"fullname": "mlsauce.LSBoostClassifier.backend", "modulename": "mlsauce", "qualname": "LSBoostClassifier.backend", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.obj": {"fullname": "mlsauce.LSBoostClassifier.obj", "modulename": "mlsauce", "qualname": "LSBoostClassifier.obj", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.solver": {"fullname": "mlsauce.LSBoostClassifier.solver", "modulename": "mlsauce", "qualname": "LSBoostClassifier.solver", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.activation": {"fullname": "mlsauce.LSBoostClassifier.activation", "modulename": "mlsauce", "qualname": "LSBoostClassifier.activation", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.n_clusters": {"fullname": "mlsauce.LSBoostClassifier.n_clusters", "modulename": "mlsauce", "qualname": "LSBoostClassifier.n_clusters", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.clustering_method": {"fullname": "mlsauce.LSBoostClassifier.clustering_method", "modulename": "mlsauce", "qualname": "LSBoostClassifier.clustering_method", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.cluster_scaling": {"fullname": "mlsauce.LSBoostClassifier.cluster_scaling", "modulename": "mlsauce", "qualname": "LSBoostClassifier.cluster_scaling", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.degree": {"fullname": "mlsauce.LSBoostClassifier.degree", "modulename": "mlsauce", "qualname": "LSBoostClassifier.degree", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.poly_": {"fullname": "mlsauce.LSBoostClassifier.poly_", "modulename": "mlsauce", "qualname": "LSBoostClassifier.poly_", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.weights_distr": {"fullname": "mlsauce.LSBoostClassifier.weights_distr", "modulename": "mlsauce", "qualname": "LSBoostClassifier.weights_distr", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostClassifier.fit": {"fullname": "mlsauce.LSBoostClassifier.fit", "modulename": "mlsauce", "qualname": "LSBoostClassifier.fit", "kind": "function", "doc": "

    Fit Booster (classifier) to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.LSBoostClassifier.predict": {"fullname": "mlsauce.LSBoostClassifier.predict", "modulename": "mlsauce", "qualname": "LSBoostClassifier.predict", "kind": "function", "doc": "

    Predict test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
    \n\n

    Returns:

    \n\n
    model predictions: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.LSBoostClassifier.predict_proba": {"fullname": "mlsauce.LSBoostClassifier.predict_proba", "modulename": "mlsauce", "qualname": "LSBoostClassifier.predict_proba", "kind": "function", "doc": "

    Predict probabilities for test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
    \n\n

    Returns:

    \n\n
    probability estimates for test data: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.LSBoostClassifier.set_score_request": {"fullname": "mlsauce.LSBoostClassifier.set_score_request", "modulename": "mlsauce", "qualname": "LSBoostClassifier.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.StumpClassifier": {"fullname": "mlsauce.StumpClassifier", "modulename": "mlsauce", "qualname": "StumpClassifier", "kind": "class", "doc": "

    Stump classifier.

    \n\n

    Attributes:

    \n\n
    bins: int\n    Number of histogram bins; as in numpy.histogram.\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin"}, "mlsauce.StumpClassifier.__init__": {"fullname": "mlsauce.StumpClassifier.__init__", "modulename": "mlsauce", "qualname": "StumpClassifier.__init__", "kind": "function", "doc": "

    \n", "signature": "(bins='auto')"}, "mlsauce.StumpClassifier.bins": {"fullname": "mlsauce.StumpClassifier.bins", "modulename": "mlsauce", "qualname": "StumpClassifier.bins", "kind": "variable", "doc": "

    \n"}, "mlsauce.StumpClassifier.obj": {"fullname": "mlsauce.StumpClassifier.obj", "modulename": "mlsauce", "qualname": "StumpClassifier.obj", "kind": "variable", "doc": "

    \n"}, "mlsauce.StumpClassifier.fit": {"fullname": "mlsauce.StumpClassifier.fit", "modulename": "mlsauce", "qualname": "StumpClassifier.fit", "kind": "function", "doc": "

    Fit Stump to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\nsample_weight: array_like, shape = [n_samples]\n    Observations weights.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, sample_weight=None, **kwargs):", "funcdef": "def"}, "mlsauce.StumpClassifier.predict": {"fullname": "mlsauce.StumpClassifier.predict", "modulename": "mlsauce", "qualname": "StumpClassifier.predict", "kind": "function", "doc": "

    Predict test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
    \n\n

    Returns:

    \n\n
    model predictions: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.StumpClassifier.predict_proba": {"fullname": "mlsauce.StumpClassifier.predict_proba", "modulename": "mlsauce", "qualname": "StumpClassifier.predict_proba", "kind": "function", "doc": "

    Predict probabilities for test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
    \n\n

    Returns:

    \n\n
    probability estimates for test data: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.StumpClassifier.set_fit_request": {"fullname": "mlsauce.StumpClassifier.set_fit_request", "modulename": "mlsauce", "qualname": "StumpClassifier.set_fit_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.StumpClassifier.set_score_request": {"fullname": "mlsauce.StumpClassifier.set_score_request", "modulename": "mlsauce", "qualname": "StumpClassifier.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.ElasticNetRegressor": {"fullname": "mlsauce.ElasticNetRegressor", "modulename": "mlsauce", "qualname": "ElasticNetRegressor", "kind": "class", "doc": "

    Elasticnet.

    \n\n

    Attributes:

    \n\n
    reg_lambda: float\n    regularization parameter.\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.ElasticNetRegressor.__init__": {"fullname": "mlsauce.ElasticNetRegressor.__init__", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.__init__", "kind": "function", "doc": "

    \n", "signature": "(reg_lambda=0.1, alpha=0.5, backend='cpu')"}, "mlsauce.ElasticNetRegressor.reg_lambda": {"fullname": "mlsauce.ElasticNetRegressor.reg_lambda", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.reg_lambda", "kind": "variable", "doc": "

    \n"}, "mlsauce.ElasticNetRegressor.alpha": {"fullname": "mlsauce.ElasticNetRegressor.alpha", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.alpha", "kind": "variable", "doc": "

    \n"}, "mlsauce.ElasticNetRegressor.backend": {"fullname": "mlsauce.ElasticNetRegressor.backend", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.backend", "kind": "variable", "doc": "

    \n"}, "mlsauce.ElasticNetRegressor.fit": {"fullname": "mlsauce.ElasticNetRegressor.fit", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.fit", "kind": "function", "doc": "

    Fit matrixops (classifier) to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.ElasticNetRegressor.predict": {"fullname": "mlsauce.ElasticNetRegressor.predict", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.predict", "kind": "function", "doc": "

    Predict test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
    \n\n

    Returns:

    \n\n
    model predictions: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.ElasticNetRegressor.set_score_request": {"fullname": "mlsauce.ElasticNetRegressor.set_score_request", "modulename": "mlsauce", "qualname": "ElasticNetRegressor.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.LassoRegressor": {"fullname": "mlsauce.LassoRegressor", "modulename": "mlsauce", "qualname": "LassoRegressor", "kind": "class", "doc": "

    Lasso.

    \n\n

    Attributes:

    \n\n
    reg_lambda: float\n    L1 regularization parameter.\n\nmax_iter: int\n    number of iterations of lasso shooting algorithm.\n\ntol: float\n    tolerance for convergence of lasso shooting algorithm.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu').\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.LassoRegressor.__init__": {"fullname": "mlsauce.LassoRegressor.__init__", "modulename": "mlsauce", "qualname": "LassoRegressor.__init__", "kind": "function", "doc": "

    \n", "signature": "(reg_lambda=0.1, max_iter=10, tol=0.001, backend='cpu')"}, "mlsauce.LassoRegressor.reg_lambda": {"fullname": "mlsauce.LassoRegressor.reg_lambda", "modulename": "mlsauce", "qualname": "LassoRegressor.reg_lambda", "kind": "variable", "doc": "

    \n"}, "mlsauce.LassoRegressor.max_iter": {"fullname": "mlsauce.LassoRegressor.max_iter", "modulename": "mlsauce", "qualname": "LassoRegressor.max_iter", "kind": "variable", "doc": "

    \n"}, "mlsauce.LassoRegressor.tol": {"fullname": "mlsauce.LassoRegressor.tol", "modulename": "mlsauce", "qualname": "LassoRegressor.tol", "kind": "variable", "doc": "

    \n"}, "mlsauce.LassoRegressor.backend": {"fullname": "mlsauce.LassoRegressor.backend", "modulename": "mlsauce", "qualname": "LassoRegressor.backend", "kind": "variable", "doc": "

    \n"}, "mlsauce.LassoRegressor.fit": {"fullname": "mlsauce.LassoRegressor.fit", "modulename": "mlsauce", "qualname": "LassoRegressor.fit", "kind": "function", "doc": "

    Fit matrixops (classifier) to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.LassoRegressor.predict": {"fullname": "mlsauce.LassoRegressor.predict", "modulename": "mlsauce", "qualname": "LassoRegressor.predict", "kind": "function", "doc": "

    Predict test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
    \n\n

    Returns:

    \n\n
    model predictions: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.LassoRegressor.set_score_request": {"fullname": "mlsauce.LassoRegressor.set_score_request", "modulename": "mlsauce", "qualname": "LassoRegressor.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.LSBoostRegressor": {"fullname": "mlsauce.LSBoostRegressor", "modulename": "mlsauce", "qualname": "LSBoostRegressor", "kind": "class", "doc": "

    LSBoost regressor.

    \n\n

    Attributes:

    \n\n
    n_estimators: int\n    number of boosting iterations.\n\nlearning_rate: float\n    controls the learning speed at training time.\n\nn_hidden_features: int\n    number of nodes in successive hidden layers.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'\n\nrow_sample: float\n    percentage of rows chosen from the training set.\n\ncol_sample: float\n    percentage of columns chosen from the training set.\n\ndropout: float\n    percentage of nodes dropped from the training set.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\ndirect_link: bool\n    indicates whether the original features are included (True) in model's\n    fitting or not (False).\n\nverbose: int\n    progress bar (yes = 1) or not (no = 0) (currently).\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n\nsolver: str\n    type of 'weak' learner; currently in ('ridge', 'lasso')\n\nactivation: str\n    activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'\n\ntype_pi: str.\n    type of prediction interval; currently \"kde\" (default) or \"bootstrap\".\n    Used only in `self.predict`, for `self.replications` > 0 and `self.kernel`\n    in ('gaussian', 'tophat'). Default is `None`.\n\nreplications: int.\n    number of replications (if needed) for predictive simulation.\n    Used only in `self.predict`, for `self.kernel` in ('gaussian',\n    'tophat') and `self.type_pi = 'kde'`. Default is `None`.\n\nn_clusters: int\n    number of clusters for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\ndegree: int\n    degree of features interactions to include in the model\n\nweights_distr: str\n    distribution of weights for constructing the model's hidden layer;\n    either 'uniform' or 'gaussian'\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.LSBoostRegressor.__init__": {"fullname": "mlsauce.LSBoostRegressor.__init__", "modulename": "mlsauce", "qualname": "LSBoostRegressor.__init__", "kind": "function", "doc": "

    \n", "signature": "(\tn_estimators=100,\tlearning_rate=0.1,\tn_hidden_features=5,\treg_lambda=0.1,\talpha=0.5,\trow_sample=1,\tcol_sample=1,\tdropout=0,\ttolerance=0.0001,\tdirect_link=1,\tverbose=1,\tseed=123,\tbackend='cpu',\tsolver='ridge',\tactivation='relu',\ttype_pi=None,\treplications=None,\tkernel=None,\tn_clusters=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tdegree=0,\tweights_distr='uniform')"}, "mlsauce.LSBoostRegressor.n_estimators": {"fullname": "mlsauce.LSBoostRegressor.n_estimators", "modulename": "mlsauce", "qualname": "LSBoostRegressor.n_estimators", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.learning_rate": {"fullname": "mlsauce.LSBoostRegressor.learning_rate", "modulename": "mlsauce", "qualname": "LSBoostRegressor.learning_rate", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.n_hidden_features": {"fullname": "mlsauce.LSBoostRegressor.n_hidden_features", "modulename": "mlsauce", "qualname": "LSBoostRegressor.n_hidden_features", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.reg_lambda": {"fullname": "mlsauce.LSBoostRegressor.reg_lambda", "modulename": "mlsauce", "qualname": "LSBoostRegressor.reg_lambda", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.alpha": {"fullname": "mlsauce.LSBoostRegressor.alpha", "modulename": "mlsauce", "qualname": "LSBoostRegressor.alpha", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.row_sample": {"fullname": "mlsauce.LSBoostRegressor.row_sample", "modulename": "mlsauce", "qualname": "LSBoostRegressor.row_sample", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.col_sample": {"fullname": "mlsauce.LSBoostRegressor.col_sample", "modulename": "mlsauce", "qualname": "LSBoostRegressor.col_sample", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.dropout": {"fullname": "mlsauce.LSBoostRegressor.dropout", "modulename": "mlsauce", "qualname": "LSBoostRegressor.dropout", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.tolerance": {"fullname": "mlsauce.LSBoostRegressor.tolerance", "modulename": "mlsauce", "qualname": "LSBoostRegressor.tolerance", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.direct_link": {"fullname": "mlsauce.LSBoostRegressor.direct_link", "modulename": "mlsauce", "qualname": "LSBoostRegressor.direct_link", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.verbose": {"fullname": "mlsauce.LSBoostRegressor.verbose", "modulename": "mlsauce", "qualname": "LSBoostRegressor.verbose", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.seed": {"fullname": "mlsauce.LSBoostRegressor.seed", "modulename": "mlsauce", "qualname": "LSBoostRegressor.seed", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.backend": {"fullname": "mlsauce.LSBoostRegressor.backend", "modulename": "mlsauce", "qualname": "LSBoostRegressor.backend", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.obj": {"fullname": "mlsauce.LSBoostRegressor.obj", "modulename": "mlsauce", "qualname": "LSBoostRegressor.obj", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.solver": {"fullname": "mlsauce.LSBoostRegressor.solver", "modulename": "mlsauce", "qualname": "LSBoostRegressor.solver", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.activation": {"fullname": "mlsauce.LSBoostRegressor.activation", "modulename": "mlsauce", "qualname": "LSBoostRegressor.activation", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.type_pi": {"fullname": "mlsauce.LSBoostRegressor.type_pi", "modulename": "mlsauce", "qualname": "LSBoostRegressor.type_pi", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.replications": {"fullname": "mlsauce.LSBoostRegressor.replications", "modulename": "mlsauce", "qualname": "LSBoostRegressor.replications", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.kernel": {"fullname": "mlsauce.LSBoostRegressor.kernel", "modulename": "mlsauce", "qualname": "LSBoostRegressor.kernel", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.n_clusters": {"fullname": "mlsauce.LSBoostRegressor.n_clusters", "modulename": "mlsauce", "qualname": "LSBoostRegressor.n_clusters", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.clustering_method": {"fullname": "mlsauce.LSBoostRegressor.clustering_method", "modulename": "mlsauce", "qualname": "LSBoostRegressor.clustering_method", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.cluster_scaling": {"fullname": "mlsauce.LSBoostRegressor.cluster_scaling", "modulename": "mlsauce", "qualname": "LSBoostRegressor.cluster_scaling", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.degree": {"fullname": "mlsauce.LSBoostRegressor.degree", "modulename": "mlsauce", "qualname": "LSBoostRegressor.degree", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.poly_": {"fullname": "mlsauce.LSBoostRegressor.poly_", "modulename": "mlsauce", "qualname": "LSBoostRegressor.poly_", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.weights_distr": {"fullname": "mlsauce.LSBoostRegressor.weights_distr", "modulename": "mlsauce", "qualname": "LSBoostRegressor.weights_distr", "kind": "variable", "doc": "

    \n"}, "mlsauce.LSBoostRegressor.fit": {"fullname": "mlsauce.LSBoostRegressor.fit", "modulename": "mlsauce", "qualname": "LSBoostRegressor.fit", "kind": "function", "doc": "

    Fit Booster (regressor) to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n   Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.LSBoostRegressor.predict": {"fullname": "mlsauce.LSBoostRegressor.predict", "modulename": "mlsauce", "qualname": "LSBoostRegressor.predict", "kind": "function", "doc": "

    Predict probabilities for test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\nlevel: int\n    Level of confidence (default = 95)\n\nmethod: str\n    `None`, or 'splitconformal', 'localconformal'\n    prediction (if you specify `return_pi = True`)\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
    \n\n

    Returns:

    \n\n
    probability estimates for test data: {array-like}\n
    \n", "signature": "(self, X, level=95, method=None, **kwargs):", "funcdef": "def"}, "mlsauce.LSBoostRegressor.set_predict_request": {"fullname": "mlsauce.LSBoostRegressor.set_predict_request", "modulename": "mlsauce", "qualname": "LSBoostRegressor.set_predict_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.LSBoostRegressor.set_score_request": {"fullname": "mlsauce.LSBoostRegressor.set_score_request", "modulename": "mlsauce", "qualname": "LSBoostRegressor.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.RidgeRegressor": {"fullname": "mlsauce.RidgeRegressor", "modulename": "mlsauce", "qualname": "RidgeRegressor", "kind": "class", "doc": "

    Ridge.

    \n\n

    Attributes:

    \n\n
    reg_lambda: float\n    regularization parameter.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.RidgeRegressor.__init__": {"fullname": "mlsauce.RidgeRegressor.__init__", "modulename": "mlsauce", "qualname": "RidgeRegressor.__init__", "kind": "function", "doc": "

    \n", "signature": "(reg_lambda=0.1, backend='cpu')"}, "mlsauce.RidgeRegressor.reg_lambda": {"fullname": "mlsauce.RidgeRegressor.reg_lambda", "modulename": "mlsauce", "qualname": "RidgeRegressor.reg_lambda", "kind": "variable", "doc": "

    \n"}, "mlsauce.RidgeRegressor.backend": {"fullname": "mlsauce.RidgeRegressor.backend", "modulename": "mlsauce", "qualname": "RidgeRegressor.backend", "kind": "variable", "doc": "

    \n"}, "mlsauce.RidgeRegressor.fit": {"fullname": "mlsauce.RidgeRegressor.fit", "modulename": "mlsauce", "qualname": "RidgeRegressor.fit", "kind": "function", "doc": "

    Fit matrixops (classifier) to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.RidgeRegressor.predict": {"fullname": "mlsauce.RidgeRegressor.predict", "modulename": "mlsauce", "qualname": "RidgeRegressor.predict", "kind": "function", "doc": "

    Predict test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
    \n\n

    Returns:

    \n\n
    model predictions: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.RidgeRegressor.set_score_request": {"fullname": "mlsauce.RidgeRegressor.set_score_request", "modulename": "mlsauce", "qualname": "RidgeRegressor.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.download": {"fullname": "mlsauce.download", "modulename": "mlsauce", "qualname": "download", "kind": "function", "doc": "

    \n", "signature": "(\tpkgname='MASS',\tdataset='Boston',\tsource='https://cran.r-universe.dev/',\t**kwargs):", "funcdef": "def"}, "mlsauce.get_config": {"fullname": "mlsauce.get_config", "modulename": "mlsauce", "qualname": "get_config", "kind": "function", "doc": "

    Retrieve current values for configuration set by set_config()

    \n\n

    Returns

    \n\n

    config : dict\n Keys are parameter names that can be passed to set_config().

    \n\n

    See Also

    \n\n

    config_context: Context manager for global mlsauce configuration\nset_config: Set global mlsauce configuration

    \n", "signature": "():", "funcdef": "def"}, "mlsauce.set_config": {"fullname": "mlsauce.set_config", "modulename": "mlsauce", "qualname": "set_config", "kind": "function", "doc": "

    Set global mlsauce configuration

    \n\n

    New in version 0.3.0.

    \n\n

    Parameters

    \n\n

    assume_finite : bool, optional\n If True, validation for finiteness will be skipped,\n saving time, but leading to potential crashes. If\n False, validation for finiteness will be performed,\n avoiding error. Global default: False.

    \n\n
    *New in version 0.3.0.*\n
    \n\n

    working_memory : int, optional\n If set, mlsauce will attempt to limit the size of temporary arrays\n to this number of MiB (per job when parallelised), often saving both\n computation time and memory on expensive operations that can be\n performed in chunks. Global default: 1024.

    \n\n
    *New in version 0.3.0.*\n
    \n\n

    print_changed_only : bool, optional\n If True, only the parameters that were set to non-default\n values will be printed when printing an estimator. For example,\n print(SVC()) while True will only print 'SVC()' while the default\n behaviour would be to print 'SVC(C=1.0, cache_size=200, ...)' with\n all the non-changed parameters.

    \n\n
    *New in version 0.3.0.*\n
    \n\n

    display : {'text', 'diagram'}, optional\n If 'diagram', estimators will be displayed as text in a jupyter lab\n of notebook context. If 'text', estimators will be displayed as\n text. Default is 'text'.

    \n\n
    *New in version 0.3.0.*\n
    \n\n

    See Also

    \n\n

    config_context: Context manager for global mlsauce configuration\nget_config: Retrieve current values of the global configuration

    \n", "signature": "(\tassume_finite=None,\tworking_memory=None,\tprint_changed_only=None,\tdisplay=None):", "funcdef": "def"}, "mlsauce.config_context": {"fullname": "mlsauce.config_context", "modulename": "mlsauce", "qualname": "config_context", "kind": "function", "doc": "

    Context manager for global mlsauce configuration

    \n\n

    Parameters

    \n\n

    assume_finite : bool, optional\n If True, validation for finiteness will be skipped,\n saving time, but leading to potential crashes. If\n False, validation for finiteness will be performed,\n avoiding error. Global default: False.

    \n\n

    working_memory : int, optional\n If set, mlsauce will attempt to limit the size of temporary arrays\n to this number of MiB (per job when parallelised), often saving both\n computation time and memory on expensive operations that can be\n performed in chunks. Global default: 1024.

    \n\n

    print_changed_only : bool, optional\n If True, only the parameters that were set to non-default\n values will be printed when printing an estimator. For example,\n print(SVC()) while True will only print 'SVC()', but would print\n 'SVC(C=1.0, cache_size=200, ...)' with all the non-changed parameters\n when False. Default is True.

    \n\n
    *New in version 0.3.0.*\n
    \n\n

    display : {'text', 'diagram'}, optional\n If 'diagram', estimators will be displayed as text in a jupyter lab\n of notebook context. If 'text', estimators will be displayed as\n text. Default is 'text'.

    \n\n
    *New in version 0.3.0.*\n
    \n\n

    Notes

    \n\n

    All settings, not just those presently modified, will be returned to\ntheir previous values when the context manager is exited. This is not\nthread-safe.

    \n\n

    Examples

    \n\n
    \n
    >>> import mlsauce\n>>> from mlsauce.utils.validation import assert_all_finite\n>>> with mlsauce.config_context(assume_finite=True):\n...     assert_all_finite([float('nan')])\n>>> with mlsauce.config_context(assume_finite=True):\n...     with mlsauce.config_context(assume_finite=False):\n...         assert_all_finite([float('nan')])\nTraceback (most recent call last):\n...\nValueError: Input contains NaN, ...\n
    \n
    \n\n

    See Also

    \n\n

    set_config: Set global mlsauce configuration\nget_config: Retrieve current values of the global configuration

    \n", "signature": "(**new_config):", "funcdef": "def"}, "mlsauce.adaopt": {"fullname": "mlsauce.adaopt", "modulename": "mlsauce.adaopt", "kind": "module", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt": {"fullname": "mlsauce.adaopt.AdaOpt", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt", "kind": "class", "doc": "

    AdaOpt classifier.

    \n\n

    Attributes:

    \n\n
    n_iterations: int\n    number of iterations of the optimizer at training time.\n\nlearning_rate: float\n    controls the speed of the optimizer at training time.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nreg_alpha: float\n    L1 regularization parameter for successive errors in the optimizer\n    (at training time).\n\neta: float\n    controls the slope in gradient descent (at training time).\n\ngamma: float\n    controls the step size in gradient descent (at training time).\n\nk: int\n    number of nearest neighbors selected at test time for classification.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\nn_clusters: int\n    number of clusters, if MiniBatch k-means is used at test time\n    (for faster prediction).\n\nbatch_size: int\n    size of the batch, if MiniBatch k-means is used at test time\n    (for faster prediction).\n\nrow_sample: float\n    percentage of rows chosen from training set (by stratified subsampling,\n    for faster prediction).\n\ntype_dist: str\n    distance used for finding the nearest neighbors; currently `euclidean-f`\n    (euclidean distances calculated as whole), `euclidean` (euclidean distances\n    calculated row by row), `cosine` (cosine distance).\n\nn_jobs: int\n    number of cpus for parallel processing (default: None)\n\nverbose: int\n    progress bar for parallel processing (yes = 1) or not (no = 0)\n\ncache: boolean\n    if the nearest neighbors are cached or not, for faster retrieval in\n    subsequent calls.\n\nn_clusters_input: int\n    number of clusters (a priori) for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin"}, "mlsauce.adaopt.AdaOpt.__init__": {"fullname": "mlsauce.adaopt.AdaOpt.__init__", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.__init__", "kind": "function", "doc": "

    \n", "signature": "(\tn_iterations=50,\tlearning_rate=0.3,\treg_lambda=0.1,\treg_alpha=0.5,\teta=0.01,\tgamma=0.01,\tk=3,\ttolerance=0,\tn_clusters=0,\tbatch_size=100,\trow_sample=0.8,\ttype_dist='euclidean-f',\tn_jobs=None,\tverbose=0,\tcache=True,\tn_clusters_input=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tseed=123)"}, "mlsauce.adaopt.AdaOpt.n_iterations": {"fullname": "mlsauce.adaopt.AdaOpt.n_iterations", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.n_iterations", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.learning_rate": {"fullname": "mlsauce.adaopt.AdaOpt.learning_rate", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.learning_rate", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"fullname": "mlsauce.adaopt.AdaOpt.reg_lambda", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.reg_lambda", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"fullname": "mlsauce.adaopt.AdaOpt.reg_alpha", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.reg_alpha", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.eta": {"fullname": "mlsauce.adaopt.AdaOpt.eta", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.eta", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.gamma": {"fullname": "mlsauce.adaopt.AdaOpt.gamma", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.gamma", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.k": {"fullname": "mlsauce.adaopt.AdaOpt.k", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.k", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.tolerance": {"fullname": "mlsauce.adaopt.AdaOpt.tolerance", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.tolerance", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.n_clusters": {"fullname": "mlsauce.adaopt.AdaOpt.n_clusters", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.n_clusters", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.batch_size": {"fullname": "mlsauce.adaopt.AdaOpt.batch_size", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.batch_size", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.row_sample": {"fullname": "mlsauce.adaopt.AdaOpt.row_sample", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.row_sample", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.type_dist": {"fullname": "mlsauce.adaopt.AdaOpt.type_dist", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.type_dist", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.n_jobs": {"fullname": "mlsauce.adaopt.AdaOpt.n_jobs", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.n_jobs", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.cache": {"fullname": "mlsauce.adaopt.AdaOpt.cache", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.cache", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.verbose": {"fullname": "mlsauce.adaopt.AdaOpt.verbose", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.verbose", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"fullname": "mlsauce.adaopt.AdaOpt.n_clusters_input", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.n_clusters_input", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.clustering_method": {"fullname": "mlsauce.adaopt.AdaOpt.clustering_method", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.clustering_method", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"fullname": "mlsauce.adaopt.AdaOpt.cluster_scaling", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.cluster_scaling", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.seed": {"fullname": "mlsauce.adaopt.AdaOpt.seed", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.seed", "kind": "variable", "doc": "

    \n"}, "mlsauce.adaopt.AdaOpt.fit": {"fullname": "mlsauce.adaopt.AdaOpt.fit", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.fit", "kind": "function", "doc": "

    Fit AdaOpt to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.adaopt.AdaOpt.predict": {"fullname": "mlsauce.adaopt.AdaOpt.predict", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.predict", "kind": "function", "doc": "

    Predict test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
    \n\n

    Returns:

    \n\n
    model predictions: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.adaopt.AdaOpt.predict_proba": {"fullname": "mlsauce.adaopt.AdaOpt.predict_proba", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.predict_proba", "kind": "function", "doc": "

    Predict probabilities for test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
    \n\n

    Returns:

    \n\n
    probability estimates for test data: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.adaopt.AdaOpt.set_score_request": {"fullname": "mlsauce.adaopt.AdaOpt.set_score_request", "modulename": "mlsauce.adaopt", "qualname": "AdaOpt.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.booster": {"fullname": "mlsauce.booster", "modulename": "mlsauce.booster", "kind": "module", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier": {"fullname": "mlsauce.booster.LSBoostClassifier", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier", "kind": "class", "doc": "

    LSBoost classifier.

    \n\n

    Attributes:

    \n\n
    n_estimators: int\n    number of boosting iterations.\n\nlearning_rate: float\n    controls the learning speed at training time.\n\nn_hidden_features: int\n    number of nodes in successive hidden layers.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'.\n\nrow_sample: float\n    percentage of rows chosen from the training set.\n\ncol_sample: float\n    percentage of columns chosen from the training set.\n\ndropout: float\n    percentage of nodes dropped from the training set.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\ndirect_link: bool\n    indicates whether the original features are included (True) in model's\n    fitting or not (False).\n\nverbose: int\n    progress bar (yes = 1) or not (no = 0) (currently).\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n\nsolver: str\n    type of 'weak' learner; currently in ('ridge', 'lasso', 'enet').\n    'enet' is a combination of 'ridge' and 'lasso' called Elastic Net.\n\nactivation: str\n    activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'\n\nn_clusters: int\n    number of clusters for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\ndegree: int\n    degree of features interactions to include in the model\n\nweights_distr: str\n    distribution of weights for constructing the model's hidden layer;\n    currently 'uniform', 'gaussian'\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin"}, "mlsauce.booster.LSBoostClassifier.__init__": {"fullname": "mlsauce.booster.LSBoostClassifier.__init__", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.__init__", "kind": "function", "doc": "

    \n", "signature": "(\tn_estimators=100,\tlearning_rate=0.1,\tn_hidden_features=5,\treg_lambda=0.1,\talpha=0.5,\trow_sample=1,\tcol_sample=1,\tdropout=0,\ttolerance=0.0001,\tdirect_link=1,\tverbose=1,\tseed=123,\tbackend='cpu',\tsolver='ridge',\tactivation='relu',\tn_clusters=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tdegree=0,\tweights_distr='uniform')"}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"fullname": "mlsauce.booster.LSBoostClassifier.n_estimators", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.n_estimators", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"fullname": "mlsauce.booster.LSBoostClassifier.learning_rate", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.learning_rate", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"fullname": "mlsauce.booster.LSBoostClassifier.n_hidden_features", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.n_hidden_features", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"fullname": "mlsauce.booster.LSBoostClassifier.reg_lambda", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.reg_lambda", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.alpha": {"fullname": "mlsauce.booster.LSBoostClassifier.alpha", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.alpha", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.row_sample": {"fullname": "mlsauce.booster.LSBoostClassifier.row_sample", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.row_sample", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.col_sample": {"fullname": "mlsauce.booster.LSBoostClassifier.col_sample", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.col_sample", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.dropout": {"fullname": "mlsauce.booster.LSBoostClassifier.dropout", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.dropout", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.tolerance": {"fullname": "mlsauce.booster.LSBoostClassifier.tolerance", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.tolerance", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.direct_link": {"fullname": "mlsauce.booster.LSBoostClassifier.direct_link", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.direct_link", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.verbose": {"fullname": "mlsauce.booster.LSBoostClassifier.verbose", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.verbose", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.seed": {"fullname": "mlsauce.booster.LSBoostClassifier.seed", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.seed", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.backend": {"fullname": "mlsauce.booster.LSBoostClassifier.backend", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.backend", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.obj": {"fullname": "mlsauce.booster.LSBoostClassifier.obj", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.obj", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.solver": {"fullname": "mlsauce.booster.LSBoostClassifier.solver", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.solver", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.activation": {"fullname": "mlsauce.booster.LSBoostClassifier.activation", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.activation", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"fullname": "mlsauce.booster.LSBoostClassifier.n_clusters", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.n_clusters", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"fullname": "mlsauce.booster.LSBoostClassifier.clustering_method", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.clustering_method", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"fullname": "mlsauce.booster.LSBoostClassifier.cluster_scaling", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.cluster_scaling", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.degree": {"fullname": "mlsauce.booster.LSBoostClassifier.degree", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.degree", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.poly_": {"fullname": "mlsauce.booster.LSBoostClassifier.poly_", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.poly_", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"fullname": "mlsauce.booster.LSBoostClassifier.weights_distr", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.weights_distr", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostClassifier.fit": {"fullname": "mlsauce.booster.LSBoostClassifier.fit", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.fit", "kind": "function", "doc": "

    Fit Booster (classifier) to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.booster.LSBoostClassifier.predict": {"fullname": "mlsauce.booster.LSBoostClassifier.predict", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.predict", "kind": "function", "doc": "

    Predict test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
    \n\n

    Returns:

    \n\n
    model predictions: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"fullname": "mlsauce.booster.LSBoostClassifier.predict_proba", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.predict_proba", "kind": "function", "doc": "

    Predict probabilities for test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
    \n\n

    Returns:

    \n\n
    probability estimates for test data: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"fullname": "mlsauce.booster.LSBoostClassifier.set_score_request", "modulename": "mlsauce.booster", "qualname": "LSBoostClassifier.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.booster.LSBoostRegressor": {"fullname": "mlsauce.booster.LSBoostRegressor", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor", "kind": "class", "doc": "

    LSBoost regressor.

    \n\n

    Attributes:

    \n\n
    n_estimators: int\n    number of boosting iterations.\n\nlearning_rate: float\n    controls the learning speed at training time.\n\nn_hidden_features: int\n    number of nodes in successive hidden layers.\n\nreg_lambda: float\n    L2 regularization parameter for successive errors in the optimizer\n    (at training time).\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'\n\nrow_sample: float\n    percentage of rows chosen from the training set.\n\ncol_sample: float\n    percentage of columns chosen from the training set.\n\ndropout: float\n    percentage of nodes dropped from the training set.\n\ntolerance: float\n    controls early stopping in gradient descent (at training time).\n\ndirect_link: bool\n    indicates whether the original features are included (True) in model's\n    fitting or not (False).\n\nverbose: int\n    progress bar (yes = 1) or not (no = 0) (currently).\n\nseed: int\n    reproducibility seed for nodes_sim=='uniform', clustering and dropout.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n\nsolver: str\n    type of 'weak' learner; currently in ('ridge', 'lasso')\n\nactivation: str\n    activation function: currently 'relu', 'relu6', 'sigmoid', 'tanh'\n\ntype_pi: str.\n    type of prediction interval; currently \"kde\" (default) or \"bootstrap\".\n    Used only in `self.predict`, for `self.replications` > 0 and `self.kernel`\n    in ('gaussian', 'tophat'). Default is `None`.\n\nreplications: int.\n    number of replications (if needed) for predictive simulation.\n    Used only in `self.predict`, for `self.kernel` in ('gaussian',\n    'tophat') and `self.type_pi = 'kde'`. Default is `None`.\n\nn_clusters: int\n    number of clusters for clustering the features\n\nclustering_method: str\n    clustering method: currently 'kmeans', 'gmm'\n\ncluster_scaling: str\n    scaling method for clustering: currently 'standard', 'robust', 'minmax'\n\ndegree: int\n    degree of features interactions to include in the model\n\nweights_distr: str\n    distribution of weights for constructing the model's hidden layer;\n    either 'uniform' or 'gaussian'\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.booster.LSBoostRegressor.__init__": {"fullname": "mlsauce.booster.LSBoostRegressor.__init__", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.__init__", "kind": "function", "doc": "

    \n", "signature": "(\tn_estimators=100,\tlearning_rate=0.1,\tn_hidden_features=5,\treg_lambda=0.1,\talpha=0.5,\trow_sample=1,\tcol_sample=1,\tdropout=0,\ttolerance=0.0001,\tdirect_link=1,\tverbose=1,\tseed=123,\tbackend='cpu',\tsolver='ridge',\tactivation='relu',\ttype_pi=None,\treplications=None,\tkernel=None,\tn_clusters=0,\tclustering_method='kmeans',\tcluster_scaling='standard',\tdegree=0,\tweights_distr='uniform')"}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"fullname": "mlsauce.booster.LSBoostRegressor.n_estimators", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.n_estimators", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"fullname": "mlsauce.booster.LSBoostRegressor.learning_rate", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.learning_rate", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"fullname": "mlsauce.booster.LSBoostRegressor.n_hidden_features", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.n_hidden_features", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"fullname": "mlsauce.booster.LSBoostRegressor.reg_lambda", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.reg_lambda", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.alpha": {"fullname": "mlsauce.booster.LSBoostRegressor.alpha", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.alpha", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.row_sample": {"fullname": "mlsauce.booster.LSBoostRegressor.row_sample", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.row_sample", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.col_sample": {"fullname": "mlsauce.booster.LSBoostRegressor.col_sample", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.col_sample", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.dropout": {"fullname": "mlsauce.booster.LSBoostRegressor.dropout", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.dropout", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.tolerance": {"fullname": "mlsauce.booster.LSBoostRegressor.tolerance", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.tolerance", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.direct_link": {"fullname": "mlsauce.booster.LSBoostRegressor.direct_link", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.direct_link", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.verbose": {"fullname": "mlsauce.booster.LSBoostRegressor.verbose", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.verbose", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.seed": {"fullname": "mlsauce.booster.LSBoostRegressor.seed", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.seed", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.backend": {"fullname": "mlsauce.booster.LSBoostRegressor.backend", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.backend", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.obj": {"fullname": "mlsauce.booster.LSBoostRegressor.obj", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.obj", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.solver": {"fullname": "mlsauce.booster.LSBoostRegressor.solver", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.solver", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.activation": {"fullname": "mlsauce.booster.LSBoostRegressor.activation", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.activation", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.type_pi": {"fullname": "mlsauce.booster.LSBoostRegressor.type_pi", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.type_pi", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.replications": {"fullname": "mlsauce.booster.LSBoostRegressor.replications", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.replications", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.kernel": {"fullname": "mlsauce.booster.LSBoostRegressor.kernel", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.kernel", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"fullname": "mlsauce.booster.LSBoostRegressor.n_clusters", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.n_clusters", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"fullname": "mlsauce.booster.LSBoostRegressor.clustering_method", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.clustering_method", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"fullname": "mlsauce.booster.LSBoostRegressor.cluster_scaling", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.cluster_scaling", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.degree": {"fullname": "mlsauce.booster.LSBoostRegressor.degree", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.degree", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.poly_": {"fullname": "mlsauce.booster.LSBoostRegressor.poly_", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.poly_", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"fullname": "mlsauce.booster.LSBoostRegressor.weights_distr", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.weights_distr", "kind": "variable", "doc": "

    \n"}, "mlsauce.booster.LSBoostRegressor.fit": {"fullname": "mlsauce.booster.LSBoostRegressor.fit", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.fit", "kind": "function", "doc": "

    Fit Booster (regressor) to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n   Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.booster.LSBoostRegressor.predict": {"fullname": "mlsauce.booster.LSBoostRegressor.predict", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.predict", "kind": "function", "doc": "

    Predict probabilities for test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\nlevel: int\n    Level of confidence (default = 95)\n\nmethod: str\n    `None`, or 'splitconformal', 'localconformal'\n    prediction (if you specify `return_pi = True`)\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
    \n\n

    Returns:

    \n\n
    probability estimates for test data: {array-like}\n
    \n", "signature": "(self, X, level=95, method=None, **kwargs):", "funcdef": "def"}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"fullname": "mlsauce.booster.LSBoostRegressor.set_predict_request", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.set_predict_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"fullname": "mlsauce.booster.LSBoostRegressor.set_score_request", "modulename": "mlsauce.booster", "qualname": "LSBoostRegressor.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.datasets": {"fullname": "mlsauce.datasets", "modulename": "mlsauce.datasets", "kind": "module", "doc": "

    \n"}, "mlsauce.datasets.dowload": {"fullname": "mlsauce.datasets.dowload", "modulename": "mlsauce.datasets.dowload", "kind": "module", "doc": "

    \n"}, "mlsauce.datasets.dowload.download": {"fullname": "mlsauce.datasets.dowload.download", "modulename": "mlsauce.datasets.dowload", "qualname": "download", "kind": "function", "doc": "

    \n", "signature": "(\tpkgname='MASS',\tdataset='Boston',\tsource='https://cran.r-universe.dev/',\t**kwargs):", "funcdef": "def"}, "mlsauce.demo": {"fullname": "mlsauce.demo", "modulename": "mlsauce.demo", "kind": "module", "doc": "

    \n"}, "mlsauce.elasticnet": {"fullname": "mlsauce.elasticnet", "modulename": "mlsauce.elasticnet", "kind": "module", "doc": "

    \n"}, "mlsauce.elasticnet.ElasticNetRegressor": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor", "kind": "class", "doc": "

    Elasticnet.

    \n\n

    Attributes:

    \n\n
    reg_lambda: float\n    regularization parameter.\n\nalpha: float\n    compromise between L1 and L2 regularization (must be in [0, 1]),\n    for `solver` == 'enet'.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.__init__", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.__init__", "kind": "function", "doc": "

    \n", "signature": "(reg_lambda=0.1, alpha=0.5, backend='cpu')"}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.reg_lambda", "kind": "variable", "doc": "

    \n"}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.alpha", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.alpha", "kind": "variable", "doc": "

    \n"}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.backend", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.backend", "kind": "variable", "doc": "

    \n"}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.fit", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.fit", "kind": "function", "doc": "

    Fit matrixops (classifier) to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.predict", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.predict", "kind": "function", "doc": "

    Predict test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
    \n\n

    Returns:

    \n\n
    model predictions: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"fullname": "mlsauce.elasticnet.ElasticNetRegressor.set_score_request", "modulename": "mlsauce.elasticnet", "qualname": "ElasticNetRegressor.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.lasso": {"fullname": "mlsauce.lasso", "modulename": "mlsauce.lasso", "kind": "module", "doc": "

    \n"}, "mlsauce.lasso.LassoRegressor": {"fullname": "mlsauce.lasso.LassoRegressor", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor", "kind": "class", "doc": "

    Lasso.

    \n\n

    Attributes:

    \n\n
    reg_lambda: float\n    L1 regularization parameter.\n\nmax_iter: int\n    number of iterations of lasso shooting algorithm.\n\ntol: float\n    tolerance for convergence of lasso shooting algorithm.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu').\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.lasso.LassoRegressor.__init__": {"fullname": "mlsauce.lasso.LassoRegressor.__init__", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.__init__", "kind": "function", "doc": "

    \n", "signature": "(reg_lambda=0.1, max_iter=10, tol=0.001, backend='cpu')"}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"fullname": "mlsauce.lasso.LassoRegressor.reg_lambda", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.reg_lambda", "kind": "variable", "doc": "

    \n"}, "mlsauce.lasso.LassoRegressor.max_iter": {"fullname": "mlsauce.lasso.LassoRegressor.max_iter", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.max_iter", "kind": "variable", "doc": "

    \n"}, "mlsauce.lasso.LassoRegressor.tol": {"fullname": "mlsauce.lasso.LassoRegressor.tol", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.tol", "kind": "variable", "doc": "

    \n"}, "mlsauce.lasso.LassoRegressor.backend": {"fullname": "mlsauce.lasso.LassoRegressor.backend", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.backend", "kind": "variable", "doc": "

    \n"}, "mlsauce.lasso.LassoRegressor.fit": {"fullname": "mlsauce.lasso.LassoRegressor.fit", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.fit", "kind": "function", "doc": "

    Fit matrixops (classifier) to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.lasso.LassoRegressor.predict": {"fullname": "mlsauce.lasso.LassoRegressor.predict", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.predict", "kind": "function", "doc": "

    Predict test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
    \n\n

    Returns:

    \n\n
    model predictions: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.lasso.LassoRegressor.set_score_request": {"fullname": "mlsauce.lasso.LassoRegressor.set_score_request", "modulename": "mlsauce.lasso", "qualname": "LassoRegressor.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist": {"fullname": "mlsauce.nonconformist", "modulename": "mlsauce.nonconformist", "kind": "module", "doc": "

    docstring

    \n"}, "mlsauce.nonconformist.AbsErrorErrFunc": {"fullname": "mlsauce.nonconformist.AbsErrorErrFunc", "modulename": "mlsauce.nonconformist", "qualname": "AbsErrorErrFunc", "kind": "class", "doc": "

    Calculates absolute error nonconformity for regression problems.

    \n\n

    For each correct output in y, nonconformity is defined as

    \n\n

    $$| y_i - \\hat{y}_i |$$

    \n", "bases": "mlsauce.nonconformist.nc.RegressionErrFunc"}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"fullname": "mlsauce.nonconformist.AbsErrorErrFunc.apply", "modulename": "mlsauce.nonconformist", "qualname": "AbsErrorErrFunc.apply", "kind": "function", "doc": "

    Apply the nonconformity function.

    \n\n

    Parameters

    \n\n

    prediction : numpy array of shape [n_samples, n_classes]\n Class probability estimates for each sample.

    \n\n

    y : numpy array of shape [n_samples]\n True output labels of each sample.

    \n\n

    Returns

    \n\n

    nc : numpy array of shape [n_samples]\n Nonconformity scores of the samples.

    \n", "signature": "(self, prediction, y):", "funcdef": "def"}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"fullname": "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse", "modulename": "mlsauce.nonconformist", "qualname": "AbsErrorErrFunc.apply_inverse", "kind": "function", "doc": "

    Apply the inverse of the nonconformity function (i.e.,\ncalculate prediction interval).

    \n\n

    Parameters

    \n\n

    nc : numpy array of shape [n_calibration_samples]\n Nonconformity scores obtained for conformal predictor.

    \n\n

    significance : float\n Significance level (0, 1).

    \n\n

    Returns

    \n\n

    interval : numpy array of shape [n_samples, 2]\n Minimum and maximum interval boundaries for each prediction.

    \n", "signature": "(self, nc, significance):", "funcdef": "def"}, "mlsauce.nonconformist.QuantileRegErrFunc": {"fullname": "mlsauce.nonconformist.QuantileRegErrFunc", "modulename": "mlsauce.nonconformist", "qualname": "QuantileRegErrFunc", "kind": "class", "doc": "

    Calculates conformalized quantile regression error.

    \n\n

    For each correct output in y, nonconformity is defined as

    \n\n

    $$max{\\hat{q}_low - y, y - \\hat{q}_high}$$

    \n", "bases": "mlsauce.nonconformist.nc.RegressionErrFunc"}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"fullname": "mlsauce.nonconformist.QuantileRegErrFunc.apply", "modulename": "mlsauce.nonconformist", "qualname": "QuantileRegErrFunc.apply", "kind": "function", "doc": "

    Apply the nonconformity function.

    \n\n

    Parameters

    \n\n

    prediction : numpy array of shape [n_samples, n_classes]\n Class probability estimates for each sample.

    \n\n

    y : numpy array of shape [n_samples]\n True output labels of each sample.

    \n\n

    Returns

    \n\n

    nc : numpy array of shape [n_samples]\n Nonconformity scores of the samples.

    \n", "signature": "(self, prediction, y):", "funcdef": "def"}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"fullname": "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse", "modulename": "mlsauce.nonconformist", "qualname": "QuantileRegErrFunc.apply_inverse", "kind": "function", "doc": "

    Apply the inverse of the nonconformity function (i.e.,\ncalculate prediction interval).

    \n\n

    Parameters

    \n\n

    nc : numpy array of shape [n_calibration_samples]\n Nonconformity scores obtained for conformal predictor.

    \n\n

    significance : float\n Significance level (0, 1).

    \n\n

    Returns

    \n\n

    interval : numpy array of shape [n_samples, 2]\n Minimum and maximum interval boundaries for each prediction.

    \n", "signature": "(self, nc, significance):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorAdapter": {"fullname": "mlsauce.nonconformist.RegressorAdapter", "modulename": "mlsauce.nonconformist", "qualname": "RegressorAdapter", "kind": "class", "doc": "

    Base class for all estimators in scikit-learn.

    \n\n

    Inheriting from this class provides default implementations of:

    \n\n
      \n
    • setting and getting parameters used by GridSearchCV and friends;
    • \n
    • textual and HTML representation displayed in terminals and IDEs;
    • \n
    • estimator serialization;
    • \n
    • parameters validation;
    • \n
    • data validation;
    • \n
    • feature names validation.
    • \n
    \n\n

    Read more in the :ref:User Guide <rolling_your_own_estimator>.

    \n\n

    Notes

    \n\n

    All estimators should specify all the parameters that can be set\nat the class level in their __init__ as explicit keyword\narguments (no *args or **kwargs).

    \n\n

    Examples

    \n\n
    \n
    >>> import numpy as np\n>>> from sklearn.base import BaseEstimator\n>>> class MyEstimator(BaseEstimator):\n...     def __init__(self, *, param=1):\n...         self.param = param\n...     def fit(self, X, y=None):\n...         self.is_fitted_ = True\n...         return self\n...     def predict(self, X):\n...         return np.full(shape=X.shape[0], fill_value=self.param)\n>>> estimator = MyEstimator(param=2)\n>>> estimator.get_params()\n{'param': 2}\n>>> X = np.array([[1, 2], [2, 3], [3, 4]])\n>>> y = np.array([1, 0, 1])\n>>> estimator.fit(X, y).predict(X)\narray([2, 2, 2])\n>>> estimator.set_params(param=3).fit(X, y).predict(X)\narray([3, 3, 3])\n
    \n
    \n", "bases": "mlsauce.nonconformist.base.BaseModelAdapter"}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"fullname": "mlsauce.nonconformist.RegressorAdapter.__init__", "modulename": "mlsauce.nonconformist", "qualname": "RegressorAdapter.__init__", "kind": "function", "doc": "

    \n", "signature": "(model, fit_params=None)"}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"fullname": "mlsauce.nonconformist.RegressorAdapter.set_fit_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorAdapter.set_fit_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"fullname": "mlsauce.nonconformist.RegressorAdapter.set_predict_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorAdapter.set_predict_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNc": {"fullname": "mlsauce.nonconformist.RegressorNc", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNc", "kind": "class", "doc": "

    Nonconformity scorer using an underlying regression model.

    \n\n

    Parameters

    \n\n

    model : RegressorAdapter\n Underlying regression model used for calculating nonconformity scores.

    \n\n

    err_func : RegressionErrFunc\n Error function object.

    \n\n

    normalizer : BaseScorer\n Normalization model.

    \n\n

    beta : float\n Normalization smoothing parameter. As the beta-value increases,\n the normalized nonconformity function approaches a non-normalized\n equivalent.

    \n\n

    Attributes

    \n\n

    model : RegressorAdapter\n Underlying model object.

    \n\n

    err_func : RegressionErrFunc\n Scorer function used to calculate nonconformity scores.

    \n\n

    See also

    \n\n

    ProbEstClassifierNc, NormalizedRegressorNc

    \n", "bases": "mlsauce.nonconformist.nc.BaseModelNc"}, "mlsauce.nonconformist.RegressorNc.__init__": {"fullname": "mlsauce.nonconformist.RegressorNc.__init__", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNc.__init__", "kind": "function", "doc": "

    \n", "signature": "(\tmodel,\terr_func=<mlsauce.nonconformist.nc.AbsErrorErrFunc object>,\tnormalizer=None,\tbeta=1e-06)"}, "mlsauce.nonconformist.RegressorNc.predict": {"fullname": "mlsauce.nonconformist.RegressorNc.predict", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNc.predict", "kind": "function", "doc": "

    Constructs prediction intervals for a set of test examples.

    \n\n

    Predicts the output of each test pattern using the underlying model,\nand applies the (partial) inverse nonconformity function to each\nprediction, resulting in a prediction interval for each test pattern.

    \n\n

    Parameters

    \n\n

    x : numpy array of shape [n_samples, n_features]\n Inputs of patters for which to predict output values.

    \n\n

    significance : float\n Significance level (maximum allowed error rate) of predictions.\n Should be a float between 0 and 1. If None, then intervals for\n all significance levels (0.01, 0.02, ..., 0.99) are output in a\n 3d-matrix.

    \n\n

    Returns

    \n\n

    p : numpy array of shape [n_samples, 2] or [n_samples, 2, 99]\n If significance is None, then p contains the interval (minimum\n and maximum boundaries) for each test pattern, and each significance\n level (0.01, 0.02, ..., 0.99). If significance is a float between\n 0 and 1, then p contains the prediction intervals (minimum and\n maximum boundaries) for the set of test patterns at the chosen\n significance level.

    \n", "signature": "(self, x, nc, significance=None):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"fullname": "mlsauce.nonconformist.RegressorNc.set_fit_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNc.set_fit_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"fullname": "mlsauce.nonconformist.RegressorNc.set_predict_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNc.set_predict_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"fullname": "mlsauce.nonconformist.RegressorNc.set_score_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNc.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNormalizer": {"fullname": "mlsauce.nonconformist.RegressorNormalizer", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer", "kind": "class", "doc": "

    Base class for all estimators in scikit-learn.

    \n\n

    Inheriting from this class provides default implementations of:

    \n\n
      \n
    • setting and getting parameters used by GridSearchCV and friends;
    • \n
    • textual and HTML representation displayed in terminals and IDEs;
    • \n
    • estimator serialization;
    • \n
    • parameters validation;
    • \n
    • data validation;
    • \n
    • feature names validation.
    • \n
    \n\n

    Read more in the :ref:User Guide <rolling_your_own_estimator>.

    \n\n

    Notes

    \n\n

    All estimators should specify all the parameters that can be set\nat the class level in their __init__ as explicit keyword\narguments (no *args or **kwargs).

    \n\n

    Examples

    \n\n
    \n
    >>> import numpy as np\n>>> from sklearn.base import BaseEstimator\n>>> class MyEstimator(BaseEstimator):\n...     def __init__(self, *, param=1):\n...         self.param = param\n...     def fit(self, X, y=None):\n...         self.is_fitted_ = True\n...         return self\n...     def predict(self, X):\n...         return np.full(shape=X.shape[0], fill_value=self.param)\n>>> estimator = MyEstimator(param=2)\n>>> estimator.get_params()\n{'param': 2}\n>>> X = np.array([[1, 2], [2, 3], [3, 4]])\n>>> y = np.array([1, 0, 1])\n>>> estimator.fit(X, y).predict(X)\narray([2, 2, 2])\n>>> estimator.set_params(param=3).fit(X, y).predict(X)\narray([3, 3, 3])\n
    \n
    \n", "bases": "mlsauce.nonconformist.nc.BaseScorer"}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.__init__", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.__init__", "kind": "function", "doc": "

    \n", "signature": "(base_model, normalizer_model, err_func)"}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.base_model", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.base_model", "kind": "variable", "doc": "

    \n"}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.normalizer_model", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.normalizer_model", "kind": "variable", "doc": "

    \n"}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.err_func", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.err_func", "kind": "variable", "doc": "

    \n"}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.fit", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.fit", "kind": "function", "doc": "

    \n", "signature": "(self, x, y):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNormalizer.score": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.score", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.score", "kind": "function", "doc": "

    \n", "signature": "(self, x, y=None):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.set_fit_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.set_fit_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"fullname": "mlsauce.nonconformist.RegressorNormalizer.set_score_request", "modulename": "mlsauce.nonconformist", "qualname": "RegressorNormalizer.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.IcpRegressor": {"fullname": "mlsauce.nonconformist.IcpRegressor", "modulename": "mlsauce.nonconformist", "qualname": "IcpRegressor", "kind": "class", "doc": "

    Inductive conformal regressor.

    \n\n

    Parameters

    \n\n

    nc_function : BaseScorer\n Nonconformity scorer object used to calculate nonconformity of\n calibration examples and test patterns. Should implement fit(x, y),\n calc_nc(x, y) and predict(x, nc_scores, significance).

    \n\n

    Attributes

    \n\n

    cal_x : numpy array of shape [n_cal_examples, n_features]\n Inputs of calibration set.

    \n\n

    cal_y : numpy array of shape [n_cal_examples]\n Outputs of calibration set.

    \n\n

    nc_function : BaseScorer\n Nonconformity scorer object used to calculate nonconformity scores.

    \n\n

    See also

    \n\n

    IcpClassifier

    \n\n

    References

    \n\n

    Examples

    \n\n
    \n
    >>> import numpy as np\n>>> from sklearn.datasets import load_boston\n>>> from sklearn.tree import DecisionTreeRegressor\n>>> from nonconformist.base import RegressorAdapter\n>>> from nonconformist.icp import IcpRegressor\n>>> from nonconformist.nc import RegressorNc, AbsErrorErrFunc\n>>> boston = load_boston()\n>>> idx = np.random.permutation(boston.target.size)\n>>> train = idx[:int(idx.size / 3)]\n>>> cal = idx[int(idx.size / 3):int(2 * idx.size / 3)]\n>>> test = idx[int(2 * idx.size / 3):]\n>>> model = RegressorAdapter(DecisionTreeRegressor())\n>>> nc = RegressorNc(model, AbsErrorErrFunc())\n>>> icp = IcpRegressor(nc)\n>>> icp.fit(boston.data[train, :], boston.target[train])\n>>> icp.calibrate(boston.data[cal, :], boston.target[cal])\n>>> icp.predict(boston.data[test, :], significance=0.10)\n...     # doctest: +SKIP\narray([[  5. ,  20.6],\n        [ 15.5,  31.1],\n        ...,\n        [ 14.2,  29.8],\n        [ 11.6,  27.2]])\n
    \n
    \n\n
    \n
    \n
      \n
    \n
    \n", "bases": "mlsauce.nonconformist.icp.BaseIcp, mlsauce.nonconformist.base.RegressorMixin"}, "mlsauce.nonconformist.IcpRegressor.__init__": {"fullname": "mlsauce.nonconformist.IcpRegressor.__init__", "modulename": "mlsauce.nonconformist", "qualname": "IcpRegressor.__init__", "kind": "function", "doc": "

    \n", "signature": "(nc_function, condition=None)"}, "mlsauce.nonconformist.IcpRegressor.predict": {"fullname": "mlsauce.nonconformist.IcpRegressor.predict", "modulename": "mlsauce.nonconformist", "qualname": "IcpRegressor.predict", "kind": "function", "doc": "

    Predict the output values for a set of input patterns.

    \n\n

    Parameters

    \n\n

    x : numpy array of shape [n_samples, n_features]\n Inputs of patters for which to predict output values.

    \n\n

    significance : float\n Significance level (maximum allowed error rate) of predictions.\n Should be a float between 0 and 1. If None, then intervals for\n all significance levels (0.01, 0.02, ..., 0.99) are output in a\n 3d-matrix.

    \n\n

    Returns

    \n\n

    p : numpy array of shape [n_samples, 2] or [n_samples, 2, 99}\n If significance is None, then p contains the interval (minimum\n and maximum boundaries) for each test pattern, and each significance\n level (0.01, 0.02, ..., 0.99). If significance is a float between\n 0 and 1, then p contains the prediction intervals (minimum and\n maximum boundaries) for the set of test patterns at the chosen\n significance level.

    \n", "signature": "(self, x, significance=None):", "funcdef": "def"}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"fullname": "mlsauce.nonconformist.IcpRegressor.set_fit_request", "modulename": "mlsauce.nonconformist", "qualname": "IcpRegressor.set_fit_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"fullname": "mlsauce.nonconformist.IcpRegressor.set_predict_request", "modulename": "mlsauce.nonconformist", "qualname": "IcpRegressor.set_predict_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.predictioninterval": {"fullname": "mlsauce.predictioninterval", "modulename": "mlsauce.predictioninterval", "kind": "module", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval": {"fullname": "mlsauce.predictioninterval.PredictionInterval", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval", "kind": "class", "doc": "

    Class PredictionInterval: Obtain prediction intervals.

    \n\n

    Attributes:

    \n\n
    obj: an object;\n    fitted object containing methods `fit` and `predict`\n\nmethod: a string;\n    method for constructing the prediction intervals.\n    Currently \"splitconformal\" (default) and \"localconformal\"\n\nlevel: a float;\n    Confidence level for prediction intervals. Default is 95,\n    equivalent to a miscoverage error of 5 (%)\n\nreplications: an integer;\n    Number of replications for simulated conformal (default is `None`)\n\ntype_pi: a string;\n    type of prediction interval: currently \"kde\" (default) or \"bootstrap\"\n\nseed: an integer;\n    Reproducibility of fit (there's a random split between fitting and calibration data)\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"fullname": "mlsauce.predictioninterval.PredictionInterval.__init__", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.__init__", "kind": "function", "doc": "

    \n", "signature": "(\tobj,\tmethod='splitconformal',\tlevel=95,\ttype_pi='bootstrap',\treplications=None,\tkernel=None,\tagg='mean',\tseed=123)"}, "mlsauce.predictioninterval.PredictionInterval.obj": {"fullname": "mlsauce.predictioninterval.PredictionInterval.obj", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.obj", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.method": {"fullname": "mlsauce.predictioninterval.PredictionInterval.method", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.method", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.level": {"fullname": "mlsauce.predictioninterval.PredictionInterval.level", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.level", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"fullname": "mlsauce.predictioninterval.PredictionInterval.type_pi", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.type_pi", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.replications": {"fullname": "mlsauce.predictioninterval.PredictionInterval.replications", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.replications", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"fullname": "mlsauce.predictioninterval.PredictionInterval.kernel", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.kernel", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.agg": {"fullname": "mlsauce.predictioninterval.PredictionInterval.agg", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.agg", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.seed": {"fullname": "mlsauce.predictioninterval.PredictionInterval.seed", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.seed", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.alpha_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.alpha_", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.quantile_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.quantile_", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.icp_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.icp_", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.calibrated_residuals_", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.scaled_calibrated_residuals_", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.calibrated_residuals_scaler_", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"fullname": "mlsauce.predictioninterval.PredictionInterval.kde_", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.kde_", "kind": "variable", "doc": "

    \n"}, "mlsauce.predictioninterval.PredictionInterval.fit": {"fullname": "mlsauce.predictioninterval.PredictionInterval.fit", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.fit", "kind": "function", "doc": "

    Fit the method to training data (X, y).

    \n\n

    Args:

    \n\n
    X: array-like, shape = [n_samples, n_features];\n    Training set vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples, ]; Target values.\n
    \n", "signature": "(self, X, y):", "funcdef": "def"}, "mlsauce.predictioninterval.PredictionInterval.predict": {"fullname": "mlsauce.predictioninterval.PredictionInterval.predict", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.predict", "kind": "function", "doc": "

    Obtain predictions and prediction intervals

    \n\n

    Args:

    \n\n
    X: array-like, shape = [n_samples, n_features];\n    Testing set vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\nreturn_pi: boolean\n    Whether the prediction interval is returned or not.\n    Default is False, for compatibility with other _estimators_.\n    If True, a tuple containing the predictions + lower and upper\n    bounds is returned.\n
    \n", "signature": "(self, X, return_pi=False):", "funcdef": "def"}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"fullname": "mlsauce.predictioninterval.PredictionInterval.set_predict_request", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.set_predict_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"fullname": "mlsauce.predictioninterval.PredictionInterval.set_score_request", "modulename": "mlsauce.predictioninterval", "qualname": "PredictionInterval.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.ridge": {"fullname": "mlsauce.ridge", "modulename": "mlsauce.ridge", "kind": "module", "doc": "

    \n"}, "mlsauce.ridge.RidgeRegressor": {"fullname": "mlsauce.ridge.RidgeRegressor", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor", "kind": "class", "doc": "

    Ridge.

    \n\n

    Attributes:

    \n\n
    reg_lambda: float\n    regularization parameter.\n\nbackend: str\n    type of backend; must be in ('cpu', 'gpu', 'tpu')\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.RegressorMixin"}, "mlsauce.ridge.RidgeRegressor.__init__": {"fullname": "mlsauce.ridge.RidgeRegressor.__init__", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor.__init__", "kind": "function", "doc": "

    \n", "signature": "(reg_lambda=0.1, backend='cpu')"}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"fullname": "mlsauce.ridge.RidgeRegressor.reg_lambda", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor.reg_lambda", "kind": "variable", "doc": "

    \n"}, "mlsauce.ridge.RidgeRegressor.backend": {"fullname": "mlsauce.ridge.RidgeRegressor.backend", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor.backend", "kind": "variable", "doc": "

    \n"}, "mlsauce.ridge.RidgeRegressor.fit": {"fullname": "mlsauce.ridge.RidgeRegressor.fit", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor.fit", "kind": "function", "doc": "

    Fit matrixops (classifier) to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\n**kwargs: additional parameters to be passed to self.cook_training_set.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, **kwargs):", "funcdef": "def"}, "mlsauce.ridge.RidgeRegressor.predict": {"fullname": "mlsauce.ridge.RidgeRegressor.predict", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor.predict", "kind": "function", "doc": "

    Predict test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
    \n\n

    Returns:

    \n\n
    model predictions: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"fullname": "mlsauce.ridge.RidgeRegressor.set_score_request", "modulename": "mlsauce.ridge", "qualname": "RidgeRegressor.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.setup": {"fullname": "mlsauce.setup", "modulename": "mlsauce.setup", "kind": "module", "doc": "

    \n"}, "mlsauce.stump": {"fullname": "mlsauce.stump", "modulename": "mlsauce.stump", "kind": "module", "doc": "

    \n"}, "mlsauce.stump.StumpClassifier": {"fullname": "mlsauce.stump.StumpClassifier", "modulename": "mlsauce.stump", "qualname": "StumpClassifier", "kind": "class", "doc": "

    Stump classifier.

    \n\n

    Attributes:

    \n\n
    bins: int\n    Number of histogram bins; as in numpy.histogram.\n
    \n", "bases": "sklearn.base.BaseEstimator, sklearn.base.ClassifierMixin"}, "mlsauce.stump.StumpClassifier.__init__": {"fullname": "mlsauce.stump.StumpClassifier.__init__", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.__init__", "kind": "function", "doc": "

    \n", "signature": "(bins='auto')"}, "mlsauce.stump.StumpClassifier.bins": {"fullname": "mlsauce.stump.StumpClassifier.bins", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.bins", "kind": "variable", "doc": "

    \n"}, "mlsauce.stump.StumpClassifier.obj": {"fullname": "mlsauce.stump.StumpClassifier.obj", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.obj", "kind": "variable", "doc": "

    \n"}, "mlsauce.stump.StumpClassifier.fit": {"fullname": "mlsauce.stump.StumpClassifier.fit", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.fit", "kind": "function", "doc": "

    Fit Stump to training data (X, y)

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\ny: array-like, shape = [n_samples]\n    Target values.\n\nsample_weight: array_like, shape = [n_samples]\n    Observations weights.\n
    \n\n

    Returns:

    \n\n
    self: object.\n
    \n", "signature": "(self, X, y, sample_weight=None, **kwargs):", "funcdef": "def"}, "mlsauce.stump.StumpClassifier.predict": {"fullname": "mlsauce.stump.StumpClassifier.predict", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.predict", "kind": "function", "doc": "

    Predict test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to `predict_proba`\n
    \n\n

    Returns:

    \n\n
    model predictions: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.stump.StumpClassifier.predict_proba": {"fullname": "mlsauce.stump.StumpClassifier.predict_proba", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.predict_proba", "kind": "function", "doc": "

    Predict probabilities for test data X.

    \n\n

    Args:

    \n\n
    X: {array-like}, shape = [n_samples, n_features]\n    Training vectors, where n_samples is the number\n    of samples and n_features is the number of features.\n\n**kwargs: additional parameters to be passed to\n    self.cook_test_set\n
    \n\n

    Returns:

    \n\n
    probability estimates for test data: {array-like}\n
    \n", "signature": "(self, X, **kwargs):", "funcdef": "def"}, "mlsauce.stump.StumpClassifier.set_fit_request": {"fullname": "mlsauce.stump.StumpClassifier.set_fit_request", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.set_fit_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.stump.StumpClassifier.set_score_request": {"fullname": "mlsauce.stump.StumpClassifier.set_score_request", "modulename": "mlsauce.stump", "qualname": "StumpClassifier.set_score_request", "kind": "function", "doc": "

    A descriptor for request methods.

    \n\n

    New in version 1.3.

    \n\n

    Parameters

    \n\n

    name : str\n The name of the method for which the request function should be\n created, e.g. \"fit\" would create a set_fit_request function.

    \n\n

    keys : list of str\n A list of strings which are accepted parameters by the created\n function, e.g. [\"sample_weight\"] if the corresponding method\n accepts it as a metadata.

    \n\n

    validate_keys : bool, default=True\n Whether to check if the requested parameters fit the actual parameters\n of the method.

    \n\n

    Notes

    \n\n

    This class is a descriptor 1 and uses PEP-362 to set the signature of\nthe returned function 2.

    \n\n

    References

    \n\n\n", "signature": "(unknown):", "funcdef": "def"}, "mlsauce.utils": {"fullname": "mlsauce.utils", "modulename": "mlsauce.utils", "kind": "module", "doc": "

    \n"}, "mlsauce.utils.cluster": {"fullname": "mlsauce.utils.cluster", "modulename": "mlsauce.utils", "qualname": "cluster", "kind": "function", "doc": "

    \n", "signature": "(\tX,\tn_clusters=None,\tmethod='kmeans',\ttype_scaling='standard',\ttraining=True,\tscaler=None,\tlabel_encoder=None,\tclusterer=None,\tseed=123):", "funcdef": "def"}, "mlsauce.utils.subsample": {"fullname": "mlsauce.utils.subsample", "modulename": "mlsauce.utils", "qualname": "subsample", "kind": "function", "doc": "

    \n", "signature": "(y, row_sample=0.8, seed=123):", "funcdef": "def"}, "mlsauce.utils.merge_two_dicts": {"fullname": "mlsauce.utils.merge_two_dicts", "modulename": "mlsauce.utils", "qualname": "merge_two_dicts", "kind": "function", "doc": "

    \n", "signature": "(x, y):", "funcdef": "def"}, "mlsauce.utils.flatten": {"fullname": "mlsauce.utils.flatten", "modulename": "mlsauce.utils", "qualname": "flatten", "kind": "function", "doc": "

    \n", "signature": "(l):", "funcdef": "def"}, "mlsauce.utils.is_float": {"fullname": "mlsauce.utils.is_float", "modulename": "mlsauce.utils", "qualname": "is_float", "kind": "function", "doc": "

    \n", "signature": "(x):", "funcdef": "def"}, "mlsauce.utils.is_factor": {"fullname": "mlsauce.utils.is_factor", "modulename": "mlsauce.utils", "qualname": "is_factor", "kind": "function", "doc": "

    \n", "signature": "(y):", "funcdef": "def"}, "mlsauce.utils.Progbar": {"fullname": "mlsauce.utils.Progbar", "modulename": "mlsauce.utils", "qualname": "Progbar", "kind": "class", "doc": "

    Displays a progress bar.

    \n\n

    Arguments

    \n\n
    target: Total number of steps expected, None if unknown.\nwidth: Progress bar width on screen.\nverbose: Verbosity mode, 0 (silent), 1 (verbose), 2 (semi-verbose)\nstateful_metrics: Iterable of string names of metrics that\n    should *not* be averaged over time. Metrics in this list\n    will be displayed as-is. All others will be averaged\n    by the progbar before display.\ninterval: Minimum visual progress update interval (in seconds).\n
    \n"}, "mlsauce.utils.Progbar.__init__": {"fullname": "mlsauce.utils.Progbar.__init__", "modulename": "mlsauce.utils", "qualname": "Progbar.__init__", "kind": "function", "doc": "

    \n", "signature": "(target, width=30, verbose=1, interval=0.05, stateful_metrics=None)"}, "mlsauce.utils.Progbar.target": {"fullname": "mlsauce.utils.Progbar.target", "modulename": "mlsauce.utils", "qualname": "Progbar.target", "kind": "variable", "doc": "

    \n"}, "mlsauce.utils.Progbar.width": {"fullname": "mlsauce.utils.Progbar.width", "modulename": "mlsauce.utils", "qualname": "Progbar.width", "kind": "variable", "doc": "

    \n"}, "mlsauce.utils.Progbar.verbose": {"fullname": "mlsauce.utils.Progbar.verbose", "modulename": "mlsauce.utils", "qualname": "Progbar.verbose", "kind": "variable", "doc": "

    \n"}, "mlsauce.utils.Progbar.interval": {"fullname": "mlsauce.utils.Progbar.interval", "modulename": "mlsauce.utils", "qualname": "Progbar.interval", "kind": "variable", "doc": "

    \n"}, "mlsauce.utils.Progbar.update": {"fullname": "mlsauce.utils.Progbar.update", "modulename": "mlsauce.utils", "qualname": "Progbar.update", "kind": "function", "doc": "

    Updates the progress bar.

    \n\n

    Arguments

    \n\n
    current: Index of current step.\nvalues: List of tuples:\n    `(name, value_for_last_step)`.\n    If `name` is in `stateful_metrics`,\n    `value_for_last_step` will be displayed as-is.\n    Else, an average of the metric over time will be displayed.\n
    \n", "signature": "(self, current, values=None):", "funcdef": "def"}, "mlsauce.utils.Progbar.add": {"fullname": "mlsauce.utils.Progbar.add", "modulename": "mlsauce.utils", "qualname": "Progbar.add", "kind": "function", "doc": "

    \n", "signature": "(self, n, values=None):", "funcdef": "def"}, "mlsauce.utils.get_beta": {"fullname": "mlsauce.utils.get_beta", "modulename": "mlsauce.utils.get_beta", "kind": "module", "doc": "

    \n"}, "mlsauce.utils.get_beta.get_beta": {"fullname": "mlsauce.utils.get_beta.get_beta", "modulename": "mlsauce.utils.get_beta", "qualname": "get_beta", "kind": "function", "doc": "

    \n", "signature": "(X, y):", "funcdef": "def"}}, "docInfo": {"mlsauce": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 277}, "mlsauce.AdaOpt.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 245, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.n_iterations": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.learning_rate": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.reg_lambda": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.reg_alpha": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.eta": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.gamma": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.k": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.tolerance": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.n_clusters": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.batch_size": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.row_sample": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.type_dist": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.n_jobs": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.cache": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.verbose": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.n_clusters_input": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.clustering_method": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.cluster_scaling": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.seed": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.AdaOpt.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 73}, "mlsauce.AdaOpt.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.AdaOpt.predict_proba": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "mlsauce.AdaOpt.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.LSBoostClassifier": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 253}, "mlsauce.LSBoostClassifier.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 264, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.n_estimators": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.learning_rate": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.n_hidden_features": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.reg_lambda": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.alpha": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.row_sample": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.col_sample": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.dropout": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.tolerance": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.direct_link": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.verbose": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.seed": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.backend": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.obj": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.solver": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.activation": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.n_clusters": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.clustering_method": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.cluster_scaling": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.degree": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.poly_": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.weights_distr": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostClassifier.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.LSBoostClassifier.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.LSBoostClassifier.predict_proba": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "mlsauce.LSBoostClassifier.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.StumpClassifier": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 23}, "mlsauce.StumpClassifier.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 3}, "mlsauce.StumpClassifier.bins": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.StumpClassifier.obj": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.StumpClassifier.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 71}, "mlsauce.StumpClassifier.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.StumpClassifier.predict_proba": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "mlsauce.StumpClassifier.set_fit_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.StumpClassifier.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.ElasticNetRegressor": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 44}, "mlsauce.ElasticNetRegressor.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 3}, "mlsauce.ElasticNetRegressor.reg_lambda": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.ElasticNetRegressor.alpha": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.ElasticNetRegressor.backend": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.ElasticNetRegressor.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.ElasticNetRegressor.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.ElasticNetRegressor.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.LassoRegressor": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 48}, "mlsauce.LassoRegressor.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 52, "bases": 0, "doc": 3}, "mlsauce.LassoRegressor.reg_lambda": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LassoRegressor.max_iter": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LassoRegressor.tol": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LassoRegressor.backend": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LassoRegressor.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.LassoRegressor.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.LassoRegressor.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.LSBoostRegressor": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 303}, "mlsauce.LSBoostRegressor.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 298, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.n_estimators": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.learning_rate": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.n_hidden_features": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.reg_lambda": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.alpha": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.row_sample": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.col_sample": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.dropout": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.tolerance": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.direct_link": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.verbose": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.seed": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.backend": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.obj": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.solver": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.activation": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.type_pi": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.replications": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.kernel": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.n_clusters": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.clustering_method": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.cluster_scaling": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.degree": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.poly_": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.weights_distr": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.LSBoostRegressor.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.LSBoostRegressor.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 89}, "mlsauce.LSBoostRegressor.set_predict_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.LSBoostRegressor.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.RidgeRegressor": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 28}, "mlsauce.RidgeRegressor.__init__": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 3}, "mlsauce.RidgeRegressor.reg_lambda": {"qualname": 3, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.RidgeRegressor.backend": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.RidgeRegressor.fit": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.RidgeRegressor.predict": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.RidgeRegressor.set_score_request": {"qualname": 4, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.download": {"qualname": 1, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 62, "bases": 0, "doc": 3}, "mlsauce.get_config": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 7, "bases": 0, "doc": 57}, "mlsauce.set_config": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 54, "bases": 0, "doc": 273}, "mlsauce.config_context": {"qualname": 2, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 486}, "mlsauce.adaopt": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 277}, "mlsauce.adaopt.AdaOpt.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 245, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.n_iterations": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.learning_rate": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.eta": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.gamma": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.k": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.tolerance": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.n_clusters": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.batch_size": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.row_sample": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.type_dist": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.n_jobs": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.cache": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.verbose": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.clustering_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.seed": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.adaopt.AdaOpt.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 73}, "mlsauce.adaopt.AdaOpt.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.adaopt.AdaOpt.predict_proba": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "mlsauce.adaopt.AdaOpt.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.booster": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 253}, "mlsauce.booster.LSBoostClassifier.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 264, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.alpha": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.row_sample": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.col_sample": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.dropout": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.tolerance": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.direct_link": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.verbose": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.seed": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.backend": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.obj": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.solver": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.activation": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.degree": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.poly_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostClassifier.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.booster.LSBoostClassifier.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.booster.LSBoostRegressor": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 303}, "mlsauce.booster.LSBoostRegressor.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 298, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.alpha": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.row_sample": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.col_sample": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.dropout": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.tolerance": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.direct_link": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.verbose": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.seed": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.backend": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.obj": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.solver": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.activation": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.type_pi": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.replications": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.kernel": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.degree": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.poly_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.booster.LSBoostRegressor.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.booster.LSBoostRegressor.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 89}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.datasets": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.datasets.dowload": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.datasets.dowload.download": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 62, "bases": 0, "doc": 3}, "mlsauce.demo": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.elasticnet": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.elasticnet.ElasticNetRegressor": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 44}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 3}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.lasso": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lasso.LassoRegressor": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 48}, "mlsauce.lasso.LassoRegressor.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 52, "bases": 0, "doc": 3}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lasso.LassoRegressor.max_iter": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lasso.LassoRegressor.tol": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lasso.LassoRegressor.backend": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.lasso.LassoRegressor.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.lasso.LassoRegressor.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.lasso.LassoRegressor.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.nonconformist.AbsErrorErrFunc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 32}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 65}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 69}, "mlsauce.nonconformist.QuantileRegErrFunc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 30}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 65}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 69}, "mlsauce.nonconformist.RegressorAdapter": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 675}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.RegressorNc": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 102}, "mlsauce.nonconformist.RegressorNc.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 68, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNc.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 193}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.RegressorNormalizer": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 675}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 22, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNormalizer.score": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.IcpRegressor": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 8, "doc": 748}, "mlsauce.nonconformist.IcpRegressor.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 3}, "mlsauce.nonconformist.IcpRegressor.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 161}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.predictioninterval": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 100}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 100, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.obj": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.method": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.level": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.replications": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.agg": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.seed": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.predictioninterval.PredictionInterval.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 57}, "mlsauce.predictioninterval.PredictionInterval.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 27, "bases": 0, "doc": 75}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.ridge": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.ridge.RidgeRegressor": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 28}, "mlsauce.ridge.RidgeRegressor.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 3}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.ridge.RidgeRegressor.backend": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.ridge.RidgeRegressor.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 28, "bases": 0, "doc": 74}, "mlsauce.ridge.RidgeRegressor.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.setup": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.stump": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.stump.StumpClassifier": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 6, "doc": 23}, "mlsauce.stump.StumpClassifier.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 18, "bases": 0, "doc": 3}, "mlsauce.stump.StumpClassifier.bins": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.stump.StumpClassifier.obj": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.stump.StumpClassifier.fit": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 71}, "mlsauce.stump.StumpClassifier.predict": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 62}, "mlsauce.stump.StumpClassifier.predict_proba": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 23, "bases": 0, "doc": 69}, "mlsauce.stump.StumpClassifier.set_fit_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.stump.StumpClassifier.set_score_request": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 198}, "mlsauce.utils": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.utils.cluster": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 111, "bases": 0, "doc": 3}, "mlsauce.utils.subsample": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 33, "bases": 0, "doc": 3}, "mlsauce.utils.merge_two_dicts": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "mlsauce.utils.flatten": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "mlsauce.utils.is_float": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "mlsauce.utils.is_factor": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "mlsauce.utils.Progbar": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 82}, "mlsauce.utils.Progbar.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 51, "bases": 0, "doc": 3}, "mlsauce.utils.Progbar.target": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.utils.Progbar.width": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.utils.Progbar.verbose": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.utils.Progbar.interval": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.utils.Progbar.update": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 57}, "mlsauce.utils.Progbar.add": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 26, "bases": 0, "doc": 3}, "mlsauce.utils.get_beta": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "mlsauce.utils.get_beta.get_beta": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}}, "length": 320, "save": true}, "index": {"qualname": {"root": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 31, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.AdaOpt.eta": {"tf": 1}, "mlsauce.AdaOpt.gamma": {"tf": 1}, "mlsauce.AdaOpt.k": {"tf": 1}, "mlsauce.AdaOpt.tolerance": {"tf": 1}, "mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.AdaOpt.cache": {"tf": 1}, "mlsauce.AdaOpt.verbose": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.AdaOpt.seed": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.adaopt.AdaOpt.eta": {"tf": 1}, "mlsauce.adaopt.AdaOpt.gamma": {"tf": 1}, "mlsauce.adaopt.AdaOpt.k": {"tf": 1}, "mlsauce.adaopt.AdaOpt.tolerance": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cache": {"tf": 1}, "mlsauce.adaopt.AdaOpt.verbose": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.adaopt.AdaOpt.seed": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}}, "df": 50}}}}, "d": {"docs": {"mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1}}, "df": 9}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1}}, "df": 4}}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.predictioninterval.PredictionInterval.agg": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 20}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar.interval": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1}}, "df": 2}}}}}}}}}, "c": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}}, "df": 5}}}}}}}}}}}, "s": {"docs": {"mlsauce.utils.is_float": {"tf": 1}, "mlsauce.utils.is_factor": {"tf": 1}}, "df": 2}}, "n": {"docs": {"mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}}, "df": 20, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}}, "df": 6}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.predictioninterval.PredictionInterval.level": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}}, "df": 12}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.LassoRegressor.tol": {"tf": 1}, "mlsauce.LassoRegressor.backend": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}}, "df": 18}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}}, "df": 56}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}}, "df": 62}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}}, "df": 6}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}}, "df": 14, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}}, "df": 4}}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}}, "df": 6}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}}, "df": 9}}}}}}}}}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.replications": {"tf": 1}}, "df": 3}}}}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}}, "df": 3}}}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}}, "df": 6}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.backend": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}}, "df": 14}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.eta": {"tf": 1}, "mlsauce.adaopt.AdaOpt.eta": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}}, "df": 4}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}}, "df": 16}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.gamma": {"tf": 1}, "mlsauce.adaopt.AdaOpt.gamma": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1}}, "df": 3}}}, "k": {"docs": {"mlsauce.AdaOpt.k": {"tf": 1}, "mlsauce.adaopt.AdaOpt.k": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LassoRegressor.tol": {"tf": 1}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.tolerance": {"tf": 1}, "mlsauce.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.adaopt.AdaOpt.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1}}, "df": 6}}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1}}, "df": 5}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.utils.merge_two_dicts": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.Progbar.target": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 7, "s": {"docs": {"mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}}, "df": 8}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}}, "df": 6}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.cache": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cache": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}}, "df": 3}}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}}, "df": 4}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 3}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.LassoRegressor.backend": {"tf": 1}, "mlsauce.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.RidgeRegressor.backend": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1}}, "df": 10}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.StumpClassifier.bins": {"tf": 1}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}}, "df": 10}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}}, "df": 6}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}}, "df": 1}, "r": {"docs": {"mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 18}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.seed": {"tf": 1}, "mlsauce.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.adaopt.AdaOpt.seed": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.seed": {"tf": 1}}, "df": 7}}, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 30}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1}}, "df": 4}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.StumpClassifier.bins": {"tf": 1}, "mlsauce.StumpClassifier.obj": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 18}}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.subsample": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1}}, "df": 2, "r": {"docs": {"mlsauce.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"tf": 1}}, "df": 4}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.utils.merge_two_dicts": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1}}, "df": 4}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1}}, "df": 2}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.verbose": {"tf": 1}, "mlsauce.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.adaopt.AdaOpt.verbose": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.utils.Progbar.verbose": {"tf": 1}}, "df": 7}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.method": {"tf": 1}}, "df": 7}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.merge_two_dicts": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}}, "df": 2}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}}, "df": 22}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}}, "df": 4}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.utils.flatten": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.is_float": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.is_factor": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 29, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.obj": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.method": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.level": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.replications": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.agg": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.seed": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}}, "df": 21}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 6}}, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}, "mlsauce.utils.Progbar.target": {"tf": 1}, "mlsauce.utils.Progbar.width": {"tf": 1}, "mlsauce.utils.Progbar.verbose": {"tf": 1}, "mlsauce.utils.Progbar.interval": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 8}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}}, "df": 4}}}, "i": {"docs": {"mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1}}, "df": 3}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}}, "df": 4}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {"mlsauce.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.StumpClassifier.obj": {"tf": 1}, "mlsauce.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.obj": {"tf": 1}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1}}, "df": 7}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"tf": 1}}, "df": 4}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.utils.Progbar.width": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1}}}}}}}}, "fullname": {"root": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 31, "m": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce": {"tf": 1}, "mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.AdaOpt.eta": {"tf": 1}, "mlsauce.AdaOpt.gamma": {"tf": 1}, "mlsauce.AdaOpt.k": {"tf": 1}, "mlsauce.AdaOpt.tolerance": {"tf": 1}, "mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.AdaOpt.cache": {"tf": 1}, "mlsauce.AdaOpt.verbose": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.AdaOpt.seed": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.StumpClassifier.bins": {"tf": 1}, "mlsauce.StumpClassifier.obj": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.LassoRegressor.tol": {"tf": 1}, "mlsauce.LassoRegressor.backend": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.backend": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.download": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.adaopt.AdaOpt.eta": {"tf": 1}, "mlsauce.adaopt.AdaOpt.gamma": {"tf": 1}, "mlsauce.adaopt.AdaOpt.k": {"tf": 1}, "mlsauce.adaopt.AdaOpt.tolerance": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cache": {"tf": 1}, "mlsauce.adaopt.AdaOpt.verbose": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.adaopt.AdaOpt.seed": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.datasets": {"tf": 1}, "mlsauce.datasets.dowload": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}, "mlsauce.demo": {"tf": 1}, "mlsauce.elasticnet": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.obj": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.method": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.level": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.replications": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.agg": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.seed": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.setup": {"tf": 1}, "mlsauce.stump": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}, "mlsauce.utils.merge_two_dicts": {"tf": 1}, "mlsauce.utils.flatten": {"tf": 1}, "mlsauce.utils.is_float": {"tf": 1}, "mlsauce.utils.is_factor": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}, "mlsauce.utils.Progbar.target": {"tf": 1}, "mlsauce.utils.Progbar.width": {"tf": 1}, "mlsauce.utils.Progbar.verbose": {"tf": 1}, "mlsauce.utils.Progbar.interval": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}, "mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1}}, "df": 320}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.method": {"tf": 1}}, "df": 7}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.merge_two_dicts": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.AdaOpt.eta": {"tf": 1}, "mlsauce.AdaOpt.gamma": {"tf": 1}, "mlsauce.AdaOpt.k": {"tf": 1}, "mlsauce.AdaOpt.tolerance": {"tf": 1}, "mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.AdaOpt.cache": {"tf": 1}, "mlsauce.AdaOpt.verbose": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.AdaOpt.seed": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.adaopt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.eta": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.gamma": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.k": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.tolerance": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.cache": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.verbose": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.seed": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}}, "df": 51}}}}, "d": {"docs": {"mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 1}}, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1}}, "df": 9}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1}}, "df": 4}}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 4}}}}, "g": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.predictioninterval.PredictionInterval.agg": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 20}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}}, "df": 2}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar.interval": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1}}, "df": 2}}}}}}}}}, "c": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}}, "df": 5}}}}}}}}}}}, "s": {"docs": {"mlsauce.utils.is_float": {"tf": 1}, "mlsauce.utils.is_factor": {"tf": 1}}, "df": 2}}, "n": {"docs": {"mlsauce.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}}, "df": 20, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}}, "df": 31}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}}, "df": 6}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.predictioninterval.PredictionInterval.level": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}}, "df": 12}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.lasso": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}}, "df": 10, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.LassoRegressor.tol": {"tf": 1}, "mlsauce.LassoRegressor.backend": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}}, "df": 18}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}}, "df": 56}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}}, "df": 62}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}}, "df": 6}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}}, "df": 14, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}}, "df": 4}}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}}, "df": 6}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}}, "df": 9}}}}}}}}}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.replications": {"tf": 1}}, "df": 3}}}}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}}, "df": 3}}}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}}, "df": 6}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.ridge": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}}, "df": 8, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.RidgeRegressor.backend": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}}, "df": 14}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.eta": {"tf": 1}, "mlsauce.adaopt.AdaOpt.eta": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}}, "df": 4}}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.elasticnet": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}}, "df": 9, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}}, "df": 16}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.gamma": {"tf": 1}, "mlsauce.adaopt.AdaOpt.gamma": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1.4142135623730951}}, "df": 3}}}, "k": {"docs": {"mlsauce.AdaOpt.k": {"tf": 1}, "mlsauce.adaopt.AdaOpt.k": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LassoRegressor.tol": {"tf": 1}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.tolerance": {"tf": 1}, "mlsauce.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.adaopt.AdaOpt.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1}}, "df": 6}}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1}}, "df": 5}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.utils.merge_two_dicts": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.Progbar.target": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 7, "s": {"docs": {"mlsauce.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}}, "df": 8}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}}, "df": 6}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.cache": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cache": {"tf": 1}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}}, "df": 3}}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}}, "df": 4}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 3}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.LassoRegressor.backend": {"tf": 1}, "mlsauce.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.RidgeRegressor.backend": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1}}, "df": 10}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.StumpClassifier.bins": {"tf": 1}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.booster": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}}, "df": 60}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1.4142135623730951}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.batch_size": {"tf": 1}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1}}, "df": 10}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1}}, "df": 6}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1}}, "df": 1}, "r": {"docs": {"mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 18}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.seed": {"tf": 1}, "mlsauce.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.adaopt.AdaOpt.seed": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.seed": {"tf": 1}}, "df": 7}}, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 30, "u": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.setup": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.LSBoostRegressor.solver": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1}}, "df": 4}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.stump": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 10, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.StumpClassifier.bins": {"tf": 1}, "mlsauce.StumpClassifier.obj": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 18}}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.subsample": {"tf": 1}}, "df": 1}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.type_dist": {"tf": 1}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1}}, "df": 2, "r": {"docs": {"mlsauce.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"tf": 1}}, "df": 4}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.utils.merge_two_dicts": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.LSBoostRegressor.dropout": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.LSBoostRegressor.degree": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1}}, "df": 4}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.demo": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.datasets.dowload": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.datasets": {"tf": 1}, "mlsauce.datasets.dowload": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 3}}}}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.n_jobs": {"tf": 1}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1}}, "df": 2}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.verbose": {"tf": 1}, "mlsauce.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.adaopt.AdaOpt.verbose": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1}, "mlsauce.utils.Progbar.verbose": {"tf": 1}}, "df": 7}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}}, "df": 22}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}}, "df": 4}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.utils.flatten": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.is_float": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.is_factor": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 29, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.predictioninterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.obj": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.method": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.level": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.replications": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.agg": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.seed": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}}, "df": 22}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 6}}, "g": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}, "mlsauce.utils.Progbar.target": {"tf": 1}, "mlsauce.utils.Progbar.width": {"tf": 1}, "mlsauce.utils.Progbar.verbose": {"tf": 1}, "mlsauce.utils.Progbar.interval": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 8}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1}}, "df": 4}}}, "i": {"docs": {"mlsauce.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1}}, "df": 3}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1}}, "df": 4}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {"mlsauce.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.StumpClassifier.obj": {"tf": 1}, "mlsauce.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.obj": {"tf": 1}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1}}, "df": 7}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.LSBoostRegressor.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"tf": 1}}, "df": 4}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.utils.Progbar.width": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.utils": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}, "mlsauce.utils.merge_two_dicts": {"tf": 1}, "mlsauce.utils.flatten": {"tf": 1}, "mlsauce.utils.is_float": {"tf": 1}, "mlsauce.utils.is_factor": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}, "mlsauce.utils.Progbar.target": {"tf": 1}, "mlsauce.utils.Progbar.width": {"tf": 1}, "mlsauce.utils.Progbar.verbose": {"tf": 1}, "mlsauce.utils.Progbar.interval": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}, "mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1}}, "df": 17}}}}, "p": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1}}}}}}}}, "annotation": {"root": {"docs": {}, "df": 0}}, "default_value": {"root": {"docs": {}, "df": 0}}, "signature": {"root": {"0": {"0": {"0": {"1": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}, "docs": {}, "df": 0}, "1": {"docs": {"mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "1": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1.4142135623730951}}, "df": 2}, "5": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}, "6": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}, "docs": {"mlsauce.AdaOpt.__init__": {"tf": 3.1622776601683795}, "mlsauce.LSBoostClassifier.__init__": {"tf": 2.6457513110645907}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.__init__": {"tf": 2.6457513110645907}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 2.6457513110645907}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 14}, "1": {"0": {"0": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 6}, "docs": {"mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}}, "df": 2}, "2": {"3": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}}, "df": 9}, "docs": {}, "df": 0}, "docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 2.449489742783178}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 2.449489742783178}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 2.449489742783178}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 13, "e": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}, "3": {"0": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}, "9": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 2.449489742783178}, "mlsauce.LSBoostClassifier.__init__": {"tf": 3.4641016151377544}, "mlsauce.StumpClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.__init__": {"tf": 3.4641016151377544}, "mlsauce.RidgeRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.download": {"tf": 2.449489742783178}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 3.4641016151377544}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 3.4641016151377544}, "mlsauce.datasets.dowload.download": {"tf": 2.449489742783178}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 2.449489742783178}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.utils.cluster": {"tf": 2}}, "df": 18}, "docs": {"mlsauce.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1.4142135623730951}}, "df": 2}, "5": {"0": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}, "docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}}, "df": 8}, "8": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}}, "df": 3}, "9": {"5": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 3}, "docs": {}, "df": 0}, "docs": {"mlsauce.AdaOpt.__init__": {"tf": 13.45362404707371}, "mlsauce.AdaOpt.fit": {"tf": 4.898979485566356}, "mlsauce.AdaOpt.predict": {"tf": 4.47213595499958}, "mlsauce.AdaOpt.predict_proba": {"tf": 4.47213595499958}, "mlsauce.AdaOpt.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LSBoostClassifier.__init__": {"tf": 14}, "mlsauce.LSBoostClassifier.fit": {"tf": 4.898979485566356}, "mlsauce.LSBoostClassifier.predict": {"tf": 4.47213595499958}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 4.47213595499958}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.StumpClassifier.__init__": {"tf": 3.7416573867739413}, "mlsauce.StumpClassifier.fit": {"tf": 5.656854249492381}, "mlsauce.StumpClassifier.predict": {"tf": 4.47213595499958}, "mlsauce.StumpClassifier.predict_proba": {"tf": 4.47213595499958}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.StumpClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 5.477225575051661}, "mlsauce.ElasticNetRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.ElasticNetRegressor.predict": {"tf": 4.47213595499958}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LassoRegressor.__init__": {"tf": 6.164414002968976}, "mlsauce.LassoRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.LassoRegressor.predict": {"tf": 4.47213595499958}, "mlsauce.LassoRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LSBoostRegressor.__init__": {"tf": 14.933184523068078}, "mlsauce.LSBoostRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.LSBoostRegressor.predict": {"tf": 6}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.RidgeRegressor.__init__": {"tf": 4.69041575982343}, "mlsauce.RidgeRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.RidgeRegressor.predict": {"tf": 4.47213595499958}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.download": {"tf": 6.782329983125268}, "mlsauce.get_config": {"tf": 2.6457513110645907}, "mlsauce.set_config": {"tf": 6.48074069840786}, "mlsauce.config_context": {"tf": 3.4641016151377544}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 13.45362404707371}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 4.898979485566356}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 4.47213595499958}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 4.47213595499958}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 14}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 4.898979485566356}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 4.47213595499958}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 4.47213595499958}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 14.933184523068078}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 6}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.datasets.dowload.download": {"tf": 6.782329983125268}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 5.477225575051661}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 4.47213595499958}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 6.164414002968976}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 4.47213595499958}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 4.242640687119285}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 4.242640687119285}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 4.242640687119285}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 4.242640687119285}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 4}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 7.280109889280518}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 5.0990195135927845}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 4}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 4.242640687119285}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 4.69041575982343}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 4}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 4.69041575982343}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 8.831760866327848}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 4.242640687119285}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 4.69041575982343}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 4.69041575982343}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 4.898979485566356}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 4.47213595499958}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 3.7416573867739413}, "mlsauce.stump.StumpClassifier.fit": {"tf": 5.656854249492381}, "mlsauce.stump.StumpClassifier.predict": {"tf": 4.47213595499958}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 4.47213595499958}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.utils.cluster": {"tf": 9.327379053088816}, "mlsauce.utils.subsample": {"tf": 5.0990195135927845}, "mlsauce.utils.merge_two_dicts": {"tf": 3.7416573867739413}, "mlsauce.utils.flatten": {"tf": 3.1622776601683795}, "mlsauce.utils.is_float": {"tf": 3.1622776601683795}, "mlsauce.utils.is_factor": {"tf": 3.1622776601683795}, "mlsauce.utils.Progbar.__init__": {"tf": 6.324555320336759}, "mlsauce.utils.Progbar.update": {"tf": 4.69041575982343}, "mlsauce.utils.Progbar.add": {"tf": 4.69041575982343}, "mlsauce.utils.get_beta": {"tf": 3.7416573867739413}, "mlsauce.utils.get_beta.get_beta": {"tf": 3.7416573867739413}}, "df": 108, "n": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 2}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.utils.cluster": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 8, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.set_config": {"tf": 2}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 2}, "mlsauce.utils.Progbar.__init__": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 20}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}}, "df": 2}}}}}}}}}, "e": {"docs": {}, "df": 0, "w": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}, "c": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}}, "df": 5}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}}}}}}}}, "n": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {"mlsauce.utils.flatten": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 6}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}}, "df": 12}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.cluster": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}}}, "t": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}, "r": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 6}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}}, "df": 12}, "l": {"docs": {}, "df": 0, "u": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 3}}}}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}}, "df": 7}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}}, "df": 8}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "g": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.cluster": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}, "k": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 7}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.download": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 36}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 3}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 6}}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.utils.cluster": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 6, "s": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 7}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 6}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.cluster": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}}, "df": 10}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.RidgeRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1}}, "df": 10}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.StumpClassifier.__init__": {"tf": 1}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 4}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}}, "df": 9}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 7}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.cluster": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 7}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}}, "df": 9}}, "l": {"docs": {}, "df": 0, "f": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 46}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2, "r": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}}}}, "v": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {"mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}}, "df": 2}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 7}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}, "mlsauce.utils.Progbar.add": {"tf": 1}}, "df": 2}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.__init__": {"tf": 1}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}}, "df": 10}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "x": {"docs": {"mlsauce.LassoRegressor.__init__": {"tf": 1}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1}}, "df": 2}, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1.4142135623730951}}, "df": 3}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}}}}}}, "x": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.utils.cluster": {"tf": 1}, "mlsauce.utils.merge_two_dicts": {"tf": 1}, "mlsauce.utils.is_float": {"tf": 1}, "mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1}}, "df": 45}, "y": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.utils.subsample": {"tf": 1}, "mlsauce.utils.merge_two_dicts": {"tf": 1}, "mlsauce.utils.is_factor": {"tf": 1}, "mlsauce.utils.get_beta": {"tf": 1}, "mlsauce.utils.get_beta.get_beta": {"tf": 1}}, "df": 24}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}}, "df": 4}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.utils.Progbar.__init__": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"mlsauce.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 4}, "k": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.download": {"tf": 1}, "mlsauce.datasets.dowload.download": {"tf": 1}}, "df": 2}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}}, "df": 2}}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {"mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1}}, "df": 1}}}}}}}}, "bases": {"root": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier": {"tf": 1.4142135623730951}}, "df": 15}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier": {"tf": 1.4142135623730951}}, "df": 17, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}}, "df": 15}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 10}}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 6}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 6}}}}}}}}}}}}, "c": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}, "doc": {"root": {"0": {"1": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}}, "df": 2}, "2": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}}, "df": 2}, "3": {"6": {"2": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.set_config": {"tf": 3.3166247903554}, "mlsauce.config_context": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.8284271247461903}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2.8284271247461903}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 18}, "1": {"0": {"2": {"4": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "1": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "4": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "5": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "6": {"0": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 29}, "docs": {}, "df": 0}, "docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 47}, "2": {"0": {"0": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}, "docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "7": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "9": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 37}, "3": {"1": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "6": {"2": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}, "docs": {}, "df": 0}, "9": {"docs": {"mlsauce.config_context": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}}, "df": 3}, "docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2.449489742783178}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2.449489742783178}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 34, "d": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 2}}, "4": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}, "5": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 2}, "6": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 1}, "8": {"6": {"1": {"7": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 29}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}, "9": {"5": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 3}, "9": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}}, "df": 2}, "docs": {}, "df": 0}, "docs": {"mlsauce": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt": {"tf": 3.1622776601683795}, "mlsauce.AdaOpt.__init__": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.n_iterations": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.learning_rate": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.reg_alpha": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.eta": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.gamma": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.k": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.tolerance": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.n_clusters": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.batch_size": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.row_sample": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.type_dist": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.n_jobs": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.cache": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.verbose": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.n_clusters_input": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.clustering_method": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.cluster_scaling": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.seed": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.fit": {"tf": 4.123105625617661}, "mlsauce.AdaOpt.predict": {"tf": 4.123105625617661}, "mlsauce.AdaOpt.predict_proba": {"tf": 4.123105625617661}, "mlsauce.AdaOpt.set_score_request": {"tf": 9}, "mlsauce.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.LSBoostClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.n_estimators": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.learning_rate": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.n_hidden_features": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.alpha": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.row_sample": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.col_sample": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.dropout": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.tolerance": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.direct_link": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.verbose": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.seed": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.backend": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.obj": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.solver": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.activation": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.n_clusters": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.clustering_method": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.cluster_scaling": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.degree": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.poly_": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.weights_distr": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.fit": {"tf": 4.123105625617661}, "mlsauce.LSBoostClassifier.predict": {"tf": 4.123105625617661}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 4.123105625617661}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 9}, "mlsauce.StumpClassifier": {"tf": 3.1622776601683795}, "mlsauce.StumpClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.bins": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.obj": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.fit": {"tf": 4.123105625617661}, "mlsauce.StumpClassifier.predict": {"tf": 4.123105625617661}, "mlsauce.StumpClassifier.predict_proba": {"tf": 4.123105625617661}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 9}, "mlsauce.StumpClassifier.set_score_request": {"tf": 9}, "mlsauce.ElasticNetRegressor": {"tf": 3.1622776601683795}, "mlsauce.ElasticNetRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.alpha": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.ElasticNetRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 9}, "mlsauce.LassoRegressor": {"tf": 3.1622776601683795}, "mlsauce.LassoRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.max_iter": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.tol": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.LassoRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.LassoRegressor.set_score_request": {"tf": 9}, "mlsauce.LSBoostRegressor": {"tf": 3.3166247903554}, "mlsauce.LSBoostRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.n_estimators": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.learning_rate": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.n_hidden_features": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.alpha": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.row_sample": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.col_sample": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.dropout": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.tolerance": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.direct_link": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.verbose": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.seed": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.obj": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.solver": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.activation": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.type_pi": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.replications": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.kernel": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.n_clusters": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.clustering_method": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.cluster_scaling": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.degree": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.poly_": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.weights_distr": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.LSBoostRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 9}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 9}, "mlsauce.RidgeRegressor": {"tf": 3.1622776601683795}, "mlsauce.RidgeRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.RidgeRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 9}, "mlsauce.download": {"tf": 1.7320508075688772}, "mlsauce.get_config": {"tf": 4.242640687119285}, "mlsauce.set_config": {"tf": 7.615773105863909}, "mlsauce.config_context": {"tf": 14}, "mlsauce.adaopt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 3.1622776601683795}, "mlsauce.adaopt.AdaOpt.__init__": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.n_iterations": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.learning_rate": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.reg_alpha": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.eta": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.gamma": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.k": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.tolerance": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.n_clusters": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.batch_size": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.row_sample": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.type_dist": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.n_jobs": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.cache": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.verbose": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.n_clusters_input": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.clustering_method": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.cluster_scaling": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.seed": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 4.123105625617661}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 4.123105625617661}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 4.123105625617661}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 9}, "mlsauce.booster": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.n_estimators": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.learning_rate": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.n_hidden_features": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.alpha": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.row_sample": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.col_sample": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.dropout": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.tolerance": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.direct_link": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.verbose": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.seed": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.backend": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.obj": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.solver": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.activation": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.n_clusters": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.clustering_method": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.cluster_scaling": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.degree": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.poly_": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.weights_distr": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 4.123105625617661}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 4.123105625617661}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 4.123105625617661}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 9}, "mlsauce.booster.LSBoostRegressor": {"tf": 3.3166247903554}, "mlsauce.booster.LSBoostRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.n_estimators": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.learning_rate": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.n_hidden_features": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.alpha": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.row_sample": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.col_sample": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.dropout": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.tolerance": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.direct_link": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.verbose": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.seed": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.obj": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.solver": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.activation": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.type_pi": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.replications": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.kernel": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.n_clusters": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.clustering_method": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.cluster_scaling": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.degree": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.poly_": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.weights_distr": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 9}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 9}, "mlsauce.datasets": {"tf": 1.7320508075688772}, "mlsauce.datasets.dowload": {"tf": 1.7320508075688772}, "mlsauce.datasets.dowload.download": {"tf": 1.7320508075688772}, "mlsauce.demo": {"tf": 1.7320508075688772}, "mlsauce.elasticnet": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 3.1622776601683795}, "mlsauce.elasticnet.ElasticNetRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.alpha": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 9}, "mlsauce.lasso": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor": {"tf": 3.1622776601683795}, "mlsauce.lasso.LassoRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.max_iter": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.tol": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 9}, "mlsauce.nonconformist": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 3.3166247903554}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 4.358898943540674}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 4.358898943540674}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 3}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 4.358898943540674}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 4.358898943540674}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 21.61018278497431}, "mlsauce.nonconformist.RegressorAdapter.__init__": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 9}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 9}, "mlsauce.nonconformist.RegressorNc": {"tf": 5.916079783099616}, "mlsauce.nonconformist.RegressorNc.__init__": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 5.0990195135927845}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 9}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 9}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 9}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 21.61018278497431}, "mlsauce.nonconformist.RegressorNormalizer.__init__": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.base_model": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.normalizer_model": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.err_func": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.fit": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.score": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 9}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 9}, "mlsauce.nonconformist.IcpRegressor": {"tf": 22.360679774997898}, "mlsauce.nonconformist.IcpRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 4.795831523312719}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 9}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 9}, "mlsauce.predictioninterval": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 3.3166247903554}, "mlsauce.predictioninterval.PredictionInterval.__init__": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.obj": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.method": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.level": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.type_pi": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.replications": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.kernel": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.agg": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.seed": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.alpha_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.quantile_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.icp_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.scaled_calibrated_residuals_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.calibrated_residuals_scaler_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.kde_": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 3.605551275463989}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 3.1622776601683795}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 9}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 9}, "mlsauce.ridge": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor": {"tf": 3.1622776601683795}, "mlsauce.ridge.RidgeRegressor.__init__": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.reg_lambda": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.backend": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 4.123105625617661}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 4.123105625617661}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 9}, "mlsauce.setup": {"tf": 1.7320508075688772}, "mlsauce.stump": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier": {"tf": 3.1622776601683795}, "mlsauce.stump.StumpClassifier.__init__": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.bins": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.obj": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.fit": {"tf": 4.123105625617661}, "mlsauce.stump.StumpClassifier.predict": {"tf": 4.123105625617661}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 4.123105625617661}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 9}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 9}, "mlsauce.utils": {"tf": 1.7320508075688772}, "mlsauce.utils.cluster": {"tf": 1.7320508075688772}, "mlsauce.utils.subsample": {"tf": 1.7320508075688772}, "mlsauce.utils.merge_two_dicts": {"tf": 1.7320508075688772}, "mlsauce.utils.flatten": {"tf": 1.7320508075688772}, "mlsauce.utils.is_float": {"tf": 1.7320508075688772}, "mlsauce.utils.is_factor": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar": {"tf": 3.1622776601683795}, "mlsauce.utils.Progbar.__init__": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.target": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.width": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.verbose": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.interval": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.update": {"tf": 3.4641016151377544}, "mlsauce.utils.Progbar.add": {"tf": 1.7320508075688772}, "mlsauce.utils.get_beta": {"tf": 1.7320508075688772}, "mlsauce.utils.get_beta.get_beta": {"tf": 1.7320508075688772}}, "df": 320, "a": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.StumpClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LassoRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 2.23606797749979}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 41, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}}, "df": 4}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 32}}}}}}}}}, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 3.1622776601683795}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 10, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}}, "df": 17}}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}}, "df": 8}}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 5}}, "l": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 7, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 2}}}}}}, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 43, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 2}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.config_context": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 38}, "g": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 38}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 4}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}}, "df": 45, "s": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 5, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 2}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.449489742783178}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 83}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 4}}}}}}}}}, "v": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1, "d": {"docs": {"mlsauce.utils.Progbar": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}}}}, "c": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 34, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}}, "df": 14}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}}, "df": 2}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 2}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 6}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 2.23606797749979}, "mlsauce.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.23606797749979}}, "df": 6}}}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 2}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 6}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.get_config": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 2.449489742783178}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}}, "df": 3}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 5}}}, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 2}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 3}}}}}, "g": {"docs": {"mlsauce.get_config": {"tf": 2.23606797749979}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 2.23606797749979}}, "df": 3, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.get_config": {"tf": 1.7320508075688772}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 1.7320508075688772}}, "df": 3}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 1}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 20}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}}, "df": 6}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1}}}}}}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}}, "df": 2}}}}}}}}}, "l": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 8}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 4, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.LSBoostRegressor": {"tf": 2.449489742783178}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.449489742783178}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}}, "df": 7}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 2.6457513110645907}}, "df": 1, "c": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 4, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}, "s": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}}, "l": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 4}}}, "e": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 4, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 5}}, "p": {"docs": {}, "df": 0, "u": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 10, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29, "d": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 29}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 2}, "mlsauce.AdaOpt.fit": {"tf": 2.23606797749979}, "mlsauce.AdaOpt.predict": {"tf": 2}, "mlsauce.AdaOpt.predict_proba": {"tf": 2}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.fit": {"tf": 2.23606797749979}, "mlsauce.LSBoostClassifier.predict": {"tf": 2}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 2}, "mlsauce.StumpClassifier.fit": {"tf": 2.449489742783178}, "mlsauce.StumpClassifier.predict": {"tf": 2}, "mlsauce.StumpClassifier.predict_proba": {"tf": 2}, "mlsauce.ElasticNetRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.ElasticNetRegressor.predict": {"tf": 2}, "mlsauce.LassoRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.LassoRegressor.predict": {"tf": 2}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor.predict": {"tf": 2}, "mlsauce.RidgeRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.RidgeRegressor.predict": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 2}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 2}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 2}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 2}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 2}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 2}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 2}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 2}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 2}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 2.23606797749979}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 2}, "mlsauce.stump.StumpClassifier.fit": {"tf": 2.449489742783178}, "mlsauce.stump.StumpClassifier.predict": {"tf": 2}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 2}}, "df": 49, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 2.23606797749979}, "mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 2}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 50}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier": {"tf": 1}}, "df": 11}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}}, "df": 2}}}}}}}, "w": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 31}, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 8, "n": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 3, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 12}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc": {"tf": 2}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2}}, "df": 9}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}}}, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 9, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 32}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}, "d": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 30, "s": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 4}}}, "n": {"docs": {"mlsauce.config_context": {"tf": 1.7320508075688772}}, "df": 1}}, "c": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2.6457513110645907}}, "df": 5}, "p": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 3}}, "i": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 3, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 8}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 2.449489742783178}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 2.8284271247461903}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 3.4641016151377544}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 2.6457513110645907}, "mlsauce.config_context": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 2.449489742783178}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.8284271247461903}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 3.4641016151377544}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 53, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 2.8284271247461903}, "mlsauce.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 2.6457513110645907}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 2.8284271247461903}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2}, "mlsauce.stump.StumpClassifier": {"tf": 1}}, "df": 15, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1.4142135623730951}}, "df": 9, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 4}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 4, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 3}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4, "d": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 3}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}}, "df": 2}}}, "f": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 2.449489742783178}, "mlsauce.config_context": {"tf": 2.449489742783178}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 42}, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 82}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2.449489742783178}}, "df": 4}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}, "x": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 2.8284271247461903}}, "df": 1}}, "c": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 2.23606797749979}}, "df": 1, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "f": {"docs": {"mlsauce.AdaOpt": {"tf": 3}, "mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LSBoostClassifier": {"tf": 3.3166247903554}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.StumpClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LassoRegressor": {"tf": 2}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor": {"tf": 3.4641016151377544}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.set_config": {"tf": 2}, "mlsauce.config_context": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 3}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostClassifier": {"tf": 3.3166247903554}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor": {"tf": 3.4641016151377544}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.lasso.LassoRegressor": {"tf": 2}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 2.23606797749979}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 2.23606797749979}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2.449489742783178}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 2.23606797749979}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 2.23606797749979}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 2.23606797749979}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 2.23606797749979}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 2.23606797749979}, "mlsauce.utils.Progbar": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.update": {"tf": 1.7320508075688772}}, "df": 93, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 2}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.set_config": {"tf": 2}, "mlsauce.config_context": {"tf": 2}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}}}, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 2}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 14, "g": {"docs": {}, "df": 0, "/": {"3": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}}}}}}}}}}}}}}}}, "docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}}}}}, "b": {"docs": {}, "df": 0, "j": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}}, "df": 17}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}}, "df": 2}}}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 3, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 4}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}}, "df": 6, "s": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1, "s": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 3.3166247903554}, "mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LSBoostClassifier": {"tf": 3}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.StumpClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.LSBoostRegressor": {"tf": 3}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt": {"tf": 3.3166247903554}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostClassifier": {"tf": 3}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostRegressor": {"tf": 3}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 3.1622776601683795}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 3.1622776601683795}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 3.1622776601683795}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 85, "i": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 3}}, "n": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}}, "df": 2}, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 34}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 6}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 2.8284271247461903}, "mlsauce.AdaOpt.fit": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 2.449489742783178}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 2.8284271247461903}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 41}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 2.449489742783178}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 42}}, "e": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 3.1622776601683795}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 3.1622776601683795}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 10}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.7320508075688772}}, "df": 25, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 2.23606797749979}}, "df": 2, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}}}, "o": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 76, "l": {"docs": {"mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 8}}}}}}}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 2.23606797749979}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.23606797749979}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 13}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 17}}}}, "n": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 10}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1, "s": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1}}}}}}, "l": {"1": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 10}, "2": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}}, "df": 8}, "docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 6}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}}, "df": 9, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 12}}}}, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1.7320508075688772}}, "df": 6}}, "t": {"docs": {"mlsauce.config_context": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 2}}, "b": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}}, "df": 36}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 31}}, "n": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 3}}}}}}}}}}}}, "w": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 1}}}, "t": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 8}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 12, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 12}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 5, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 3, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}, "e": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 3}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 5, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 41}, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 31}}}}}}, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 7}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.7320508075688772}}, "df": 29, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}}}}}, "f": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 30}}}}}}}}, "l": {"docs": {}, "df": 0, "u": {"6": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}, "docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 1}}}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 6}}}}}, "f": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 2.6457513110645907}, "mlsauce.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 2.6457513110645907}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.6457513110645907}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 19}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 3.605551275463989}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 3}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.get_config": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 2}, "mlsauce.config_context": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 3.605551275463989}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 3}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.449489742783178}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 64}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 2}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 7}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2.23606797749979}}, "df": 10}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 2.6457513110645907}}, "df": 2, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "t": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.7320508075688772}}, "df": 48, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 5}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 3}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.predict": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 2}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 2}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.7320508075688772}}, "df": 45}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 1, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 2}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 2}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 2}, "mlsauce.StumpClassifier.set_score_request": {"tf": 2}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 2}, "mlsauce.LassoRegressor.set_score_request": {"tf": 2}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 2}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 2}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 2}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 2}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 2}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 2}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 2}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 2}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNc": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 2}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 2}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 2}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 2}}, "df": 40}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 5, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 4}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 3}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 6}}}}}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.7320508075688772}}, "df": 3, "s": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}}}}}, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 2.6457513110645907}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.6457513110645907}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 43, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.StumpClassifier": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}}, "df": 4}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2.23606797749979}}, "df": 5}}, "m": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 2.6457513110645907}}, "df": 5}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}}}, "f": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 2.449489742783178}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 2.449489742783178}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2.6457513110645907}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 26}}, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.get_config": {"tf": 2.23606797749979}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 65, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 5, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 7}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 39, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 2}, "mlsauce.AdaOpt.predict": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.fit": {"tf": 2}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.fit": {"tf": 2.23606797749979}, "mlsauce.StumpClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.fit": {"tf": 2}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.fit": {"tf": 2}, "mlsauce.LassoRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.fit": {"tf": 2}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.fit": {"tf": 2}, "mlsauce.RidgeRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 2}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 2}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 2}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 2}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 2}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 2}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.fit": {"tf": 2.23606797749979}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.7320508075688772}}, "df": 42}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 6}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 6}, "r": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 45}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 35}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}}, "df": 6}}}}}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "v": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 1.7320508075688772}}, "df": 2}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}}, "df": 2, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 2.6457513110645907}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2.6457513110645907}}, "df": 2, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 14, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 2}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 2}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 2}, "mlsauce.StumpClassifier.set_score_request": {"tf": 2}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 2}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 2}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 2}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 2}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 2}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 2}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 2}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 2}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 2}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 2}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 2}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 2}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 2}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 2}}, "df": 73}}}}}, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}}, "df": 2}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 33}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}}, "df": 3}}, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 2}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 28, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.4142135623730951}}, "df": 14, "s": {"docs": {"mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}}, "df": 15}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 1}}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 2}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}}, "df": 2}}, "s": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 8}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}}, "df": 12, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 8}}}, "y": {"docs": {"mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 10}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.set_config": {"tf": 2}, "mlsauce.config_context": {"tf": 2}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}}, "df": 6}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}}}}, "p": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 29}}}}}, "i": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 6}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}}}}, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 31, "r": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 1, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 8, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 2.23606797749979}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}}, "df": 8}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 2}, "mlsauce.adaopt.AdaOpt": {"tf": 2}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 10}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2.449489742783178}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2.449489742783178}}, "df": 4, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 9}}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}}, "df": 6}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}}, "df": 2, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 2}}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2}}, "df": 5}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 2}}}}}}}}}}, "g": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 29, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "v": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}}, "df": 4}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}, "p": {"docs": {}, "df": 0, "u": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 10}}, "t": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.config_context": {"tf": 3.4641016151377544}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 5.291502622129181}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 5.291502622129181}, "mlsauce.nonconformist.IcpRegressor": {"tf": 7.14142842854285}}, "df": 6}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.get_config": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 2.23606797749979}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 4, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 29}}}}}}}}, "f": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}}, "df": 2, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 2.23606797749979}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 41}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 2}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "r": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 6}}, "s": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.get_config": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 6}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}}, "df": 39, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 1}}}}}}}, "k": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}}, "df": 2, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 34}}}}}, "e": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.get_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 30}, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 3}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 5}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "x": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}}}, "b": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.AdaOpt.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.7320508075688772}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.7320508075688772}}, "df": 39, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 30}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1, "s": {"docs": {"mlsauce.utils.Progbar": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 2}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1, "l": {"docs": {"mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 2.449489742783178}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}}, "df": 19}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}}, "df": 10}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}}, "df": 6}}}}}}}, "x": {"docs": {"mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.7320508075688772}}, "df": 4}}}}, "{": {"docs": {}, "df": 0, "\\": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "q": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 1}}}}}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.get_config": {"tf": 1.4142135623730951}, "mlsauce.set_config": {"tf": 1.7320508075688772}, "mlsauce.config_context": {"tf": 2.8284271247461903}}, "df": 3}}}}}}, "y": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 8}, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}}, "df": 6}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}}, "df": 2}}}}}}}}, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1, "s": {"docs": {"mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 1}}}}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}}, "df": 2}}}, "r": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 8}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor": {"tf": 1.4142135623730951}}, "df": 10}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}, "y": {"docs": {"mlsauce.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1}}, "df": 35}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 35, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}}, "df": 4}}}}, "t": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {"mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 3}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc.apply_inverse": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}}, "df": 4}}}}}, "s": {"docs": {"mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.nonconformist.IcpRegressor": {"tf": 3}}, "df": 1}}}}}, "e": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 2.6457513110645907}, "mlsauce.config_context": {"tf": 2.6457513110645907}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1.7320508075688772}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 80, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.ElasticNetRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval": {"tf": 1}}, "df": 9}}}}, "a": {"docs": {"mlsauce.nonconformist.RegressorNc": {"tf": 1.4142135623730951}}, "df": 1}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.set_config": {"tf": 1}}, "df": 1}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.StumpClassifier": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier": {"tf": 1.4142135623730951}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1.4142135623730951}}, "df": 2}}}, "w": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 36}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 34}}}}, "n": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 2}}, "df": 2}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1.4142135623730951}}, "df": 31}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 31}}}, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 31, "s": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}}, "df": 6}}}}}, "a": {"docs": {}, "df": 0, "k": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 4}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.set_config": {"tf": 2.6457513110645907}, "mlsauce.config_context": {"tf": 2.8284271247461903}, "mlsauce.utils.Progbar": {"tf": 1.4142135623730951}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 4}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 2}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}}, "df": 3}}, "d": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.utils.Progbar": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "j": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}}, "df": 2}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.set_config": {"tf": 1}, "mlsauce.config_context": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}, "mlsauce.utils.Progbar": {"tf": 1.7320508075688772}}, "df": 7}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.set_config": {"tf": 2.23606797749979}, "mlsauce.config_context": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 31}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.AdaOpt.predict": {"tf": 1}, "mlsauce.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.predict": {"tf": 1}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.predict": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1}}, "df": 36}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNc": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1.4142135623730951}}, "df": 4, "s": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1}, "mlsauce.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.StumpClassifier.fit": {"tf": 1}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.LassoRegressor.fit": {"tf": 1}, "mlsauce.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.RidgeRegressor.fit": {"tf": 1}, "mlsauce.get_config": {"tf": 1}, "mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.7320508075688772}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1}, "mlsauce.utils.Progbar.update": {"tf": 1}}, "df": 21}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"mlsauce.config_context": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.set_config": {"tf": 1.4142135623730951}, "mlsauce.config_context": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1.7320508075688772}}, "df": 4}}}}}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.utils.Progbar": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.AbsErrorErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1.7320508075688772}, "mlsauce.nonconformist.QuantileRegErrFunc.apply": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor": {"tf": 1.7320508075688772}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}}, "df": 22, "e": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt": {"tf": 1}, "mlsauce.LSBoostClassifier": {"tf": 1}, "mlsauce.LSBoostRegressor": {"tf": 1}, "mlsauce.adaopt.AdaOpt": {"tf": 1}, "mlsauce.booster.LSBoostClassifier": {"tf": 1}, "mlsauce.booster.LSBoostRegressor": {"tf": 1}}, "df": 6}}, "o": {"docs": {}, "df": 0, "u": {"docs": {"mlsauce.LSBoostRegressor.predict": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1}}, "df": 2, "r": {"docs": {"mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}}, "df": 2}}}}, "x": {"docs": {"mlsauce.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.fit": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict": {"tf": 1.4142135623730951}, "mlsauce.adaopt.AdaOpt.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostClassifier.predict_proba": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.booster.LSBoostRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.elasticnet.ElasticNetRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.lasso.LassoRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 2.8284271247461903}, "mlsauce.nonconformist.RegressorNc.predict": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 2.8284271247461903}, "mlsauce.nonconformist.IcpRegressor": {"tf": 2}, "mlsauce.nonconformist.IcpRegressor.predict": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.fit": {"tf": 1.4142135623730951}, "mlsauce.predictioninterval.PredictionInterval.predict": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.fit": {"tf": 1.4142135623730951}, "mlsauce.ridge.RidgeRegressor.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.fit": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier.predict_proba": {"tf": 1.4142135623730951}}, "df": 41}, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}}, "w": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "w": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 29}}}}}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {"mlsauce.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.StumpClassifier.set_score_request": {"tf": 1}, "mlsauce.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.adaopt.AdaOpt.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostClassifier.set_score_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_predict_request": {"tf": 1}, "mlsauce.booster.LSBoostRegressor.set_score_request": {"tf": 1}, "mlsauce.elasticnet.ElasticNetRegressor.set_score_request": {"tf": 1}, "mlsauce.lasso.LassoRegressor.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorAdapter.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_predict_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNc.set_score_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.RegressorNormalizer.set_score_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_fit_request": {"tf": 1}, "mlsauce.nonconformist.IcpRegressor.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_predict_request": {"tf": 1}, "mlsauce.predictioninterval.PredictionInterval.set_score_request": {"tf": 1}, "mlsauce.ridge.RidgeRegressor.set_score_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_fit_request": {"tf": 1}, "mlsauce.stump.StumpClassifier.set_score_request": {"tf": 1}}, "df": 31}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"mlsauce.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.LSBoostRegressor": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostClassifier": {"tf": 1.7320508075688772}, "mlsauce.booster.LSBoostRegressor": {"tf": 1.7320508075688772}}, "df": 4}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"mlsauce.StumpClassifier": {"tf": 1.4142135623730951}, "mlsauce.stump.StumpClassifier": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "g": {"docs": {}, "df": 0, "h": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "{": {"docs": {}, "df": 0, "y": {"docs": {"mlsauce.nonconformist.AbsErrorErrFunc": {"tf": 1}}, "df": 1}, "q": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 1}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"mlsauce.nonconformist.QuantileRegErrFunc": {"tf": 1}}, "df": 1}}}}}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; // mirrored in build-search-index.js (part 1) // Also split on html tags. this is a cheap heuristic, but good enough. diff --git a/mlsauce.egg-info/PKG-INFO b/mlsauce.egg-info/PKG-INFO index 376e206..a3d8367 100644 --- a/mlsauce.egg-info/PKG-INFO +++ b/mlsauce.egg-info/PKG-INFO @@ -1,6 +1,6 @@ Metadata-Version: 2.1 Name: mlsauce -Version: 0.18.1 +Version: 0.18.2 Summary: Miscellaneous Statistical/Machine Learning tools Maintainer: T. Moudiki Maintainer-email: thierry.moudiki@gmail.com diff --git a/mlsauce/adaopt/_adaoptc.cpython-311-darwin.so b/mlsauce/adaopt/_adaoptc.cpython-311-darwin.so index 63246a6..71739dc 100755 Binary files a/mlsauce/adaopt/_adaoptc.cpython-311-darwin.so and b/mlsauce/adaopt/_adaoptc.cpython-311-darwin.so differ diff --git a/mlsauce/adaopt/setup2.py b/mlsauce/adaopt/setup2.py index 7c8d0cd..c373a95 100644 --- a/mlsauce/adaopt/setup2.py +++ b/mlsauce/adaopt/setup2.py @@ -1,5 +1,5 @@ import os -from distutils.core import setup +from setuptools import setup from Cython.Build import cythonize dir_path = os.path.dirname(os.path.realpath(__file__)) diff --git a/mlsauce/booster/_booster_classifier.py b/mlsauce/booster/_booster_classifier.py index fff451a..a060ad4 100644 --- a/mlsauce/booster/_booster_classifier.py +++ b/mlsauce/booster/_booster_classifier.py @@ -5,6 +5,7 @@ from sklearn.base import BaseEstimator from sklearn.base import ClassifierMixin from sklearn.preprocessing import PolynomialFeatures + try: from . import _boosterc as boosterc except ImportError: @@ -77,7 +78,7 @@ class LSBoostClassifier(BaseEstimator, ClassifierMixin): degree: int degree of features interactions to include in the model - + weights_distr: str distribution of weights for constructing the model's hidden layer; currently 'uniform', 'gaussian' @@ -105,7 +106,7 @@ def __init__( clustering_method="kmeans", cluster_scaling="standard", degree=0, - weights_distr="uniform" + weights_distr="uniform", ): if n_clusters > 0: assert clustering_method in ( diff --git a/mlsauce/booster/_booster_regressor.py b/mlsauce/booster/_booster_regressor.py index 6eef63a..8fe7744 100644 --- a/mlsauce/booster/_booster_regressor.py +++ b/mlsauce/booster/_booster_regressor.py @@ -5,6 +5,7 @@ from sklearn.base import BaseEstimator from sklearn.base import RegressorMixin from sklearn.preprocessing import PolynomialFeatures + try: from . import _boosterc as boosterc except ImportError: @@ -87,9 +88,9 @@ class LSBoostRegressor(BaseEstimator, RegressorMixin): degree: int degree of features interactions to include in the model - + weights_distr: str - distribution of weights for constructing the model's hidden layer; + distribution of weights for constructing the model's hidden layer; either 'uniform' or 'gaussian' """ @@ -118,7 +119,7 @@ def __init__( clustering_method="kmeans", cluster_scaling="standard", degree=0, - weights_distr="uniform" + weights_distr="uniform", ): if n_clusters > 0: assert clustering_method in ( diff --git a/mlsauce/booster/_boosterc.cpython-311-darwin.so b/mlsauce/booster/_boosterc.cpython-311-darwin.so index 704da88..5910406 100755 Binary files a/mlsauce/booster/_boosterc.cpython-311-darwin.so and b/mlsauce/booster/_boosterc.cpython-311-darwin.so differ diff --git a/mlsauce/lasso/_lassoc.cpython-311-darwin.so b/mlsauce/lasso/_lassoc.cpython-311-darwin.so index 2fbc0d5..59f6236 100755 Binary files a/mlsauce/lasso/_lassoc.cpython-311-darwin.so and b/mlsauce/lasso/_lassoc.cpython-311-darwin.so differ diff --git a/mlsauce/lasso/setup2.py b/mlsauce/lasso/setup2.py index 39625ba..5cf1434 100644 --- a/mlsauce/lasso/setup2.py +++ b/mlsauce/lasso/setup2.py @@ -1,5 +1,5 @@ import os -from distutils.core import setup +from setuptools import setup from Cython.Build import cythonize dir_path = os.path.dirname(os.path.realpath(__file__)) diff --git a/mlsauce/ridge/_ridgec.cpython-311-darwin.so b/mlsauce/ridge/_ridgec.cpython-311-darwin.so index a0fdc57..3807bcb 100755 Binary files a/mlsauce/ridge/_ridgec.cpython-311-darwin.so and b/mlsauce/ridge/_ridgec.cpython-311-darwin.so differ diff --git a/mlsauce/ridge/setup2.py b/mlsauce/ridge/setup2.py index 1228d19..d8531f3 100644 --- a/mlsauce/ridge/setup2.py +++ b/mlsauce/ridge/setup2.py @@ -1,5 +1,5 @@ import os -from distutils.core import setup +from setuptools import setup from Cython.Build import cythonize dir_path = os.path.dirname(os.path.realpath(__file__)) diff --git a/mlsauce/stump/_stumpc.cpython-311-darwin.so b/mlsauce/stump/_stumpc.cpython-311-darwin.so index d250126..9fa67a7 100755 Binary files a/mlsauce/stump/_stumpc.cpython-311-darwin.so and b/mlsauce/stump/_stumpc.cpython-311-darwin.so differ diff --git a/mlsauce/stump/setup2.py b/mlsauce/stump/setup2.py index 1caa2d8..f86e81f 100644 --- a/mlsauce/stump/setup2.py +++ b/mlsauce/stump/setup2.py @@ -1,5 +1,5 @@ import os -from distutils.core import setup +from setuptools import setup from Cython.Build import cythonize dir_path = os.path.dirname(os.path.realpath(__file__)) diff --git a/setup.py b/setup.py index 74b6b2a..b1f9668 100644 --- a/setup.py +++ b/setup.py @@ -37,7 +37,7 @@ MAINTAINER_EMAIL = 'thierry.moudiki@gmail.com' LICENSE = 'BSD3 Clause Clear' -__version__ = '0.18.1' +__version__ = '0.18.2' VERSION = __version__