Skip to content

Latest commit

 

History

History
68 lines (47 loc) · 2.04 KB

README.md

File metadata and controls

68 lines (47 loc) · 2.04 KB

Ahead

Univariate and multivariate time series forecasting with uncertainty quantification (including simulation).

Build Status CodeFactor

Documentation

This package is a Julia wrapper for R package ahead, and it follows its API as closely as possible: see https://techtonique.r-universe.dev/ahead#reference for details.

Installation

julia> using Pkg; Pkg.add(path = "https://github.com/Techtonique/Ahead.jl")

Examples

using Ahead
y = [1,2,3,4,5,6,7,8,9,10]
z = rand(8, 2)
u = rand(50)

Univariate forecasting with dynrmf, Dynamic regression model

val1 = Ahead.dynrmf(y, h=6)
println(val1) 

Multivariate forecasting with ridge2f, Random Vector functional link network model with 2 regularization parameters (see https://www.mdpi.com/2227-9091/6/1/22)

val2 = Ahead.ridge2f(z, h=4)
println(val2) 

TODO

Note to self or developers

Docker

docker build -t ahead .&&docker run ahead 

Install locally

$ rm -rf ~/.julia/compiled # clearing cache
$ rm -rf ~/.julia/lib # clearing cache
julia> using Pkg; Pkg.rm("Ahead")
pkg> rm Ahead 
julia> using Pkg; Pkg.add(path="https://github.com/Techtonique/Ahead.jl")
julia> using Pkg; Pkg.update("Ahead")
pkg> activate Ahead