-
Notifications
You must be signed in to change notification settings - Fork 5
/
ensemblePredict.py
230 lines (208 loc) · 10.1 KB
/
ensemblePredict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import csv
import argparse
import random
import numpy
from pytorch_transformers import BertModel
import torch
from torch.utils.data import DataLoader, random_split
from data_utils import build_tokenizer, build_embedding_matrix, Tokenizer4Bert, ABSADataset
from models import LSTM, MemNet, RAM, TD_LSTM, TC_LSTM, Cabasc, ATAE_LSTM, TNet_LF, AOA, MGAN, LCF_BERT
from models.aen import CrossEntropyLoss_LSR, AEN_BERT
from models.bert_spc import BERT_SPC
from models.sdgcn import SDGCN
class Predictor:
def __init__(self, opt, tokenizer, bert, testset):
self.opt = opt
if 'bert' in opt.model_name:
# tokenizer = Tokenizer4Bert(opt.max_seq_len, opt.pretrained_bert_name)
# bert = BertModel.from_pretrained(opt.pretrained_bert_name)
self.model = opt.model_class(bert, opt).to(opt.device)
print(opt.model_name)
else:
tokenizer = build_tokenizer(
fnames=[opt.dataset_file['train'], opt.dataset_file['test']],
max_seq_len=opt.max_seq_len,
dat_fname='{0}_tokenizer.dat'.format(opt.dataset))
embedding_matrix = build_embedding_matrix(
word2idx=tokenizer.word2idx,
embed_dim=opt.embed_dim,
dat_fname='{0}_{1}_embedding_matrix.dat'.format(str(opt.embed_dim), opt.dataset))
self.model = opt.model_class(embedding_matrix, opt).to(opt.device)
# self.trainset = ABSADataset(opt.dataset_file['train'], tokenizer)
self.testset = testset
# assert 0 <= opt.valset_ratio < 1
# if opt.valset_ratio > 0:
# valset_len = int(len(self.trainset) * opt.valset_ratio)
# self.trainset, self.valset = random_split(self.trainset, (len(self.trainset) - valset_len, valset_len))
# else:
# self.valset = self.testset
#
# if opt.device.type == 'cuda':
# logger.info('cuda memory allocated: {}'.format(torch.cuda.memory_allocated(device=opt.device.index)))
model_path = 'saved/' + opt.model_name + '.hdf5'
self.model.load_state_dict(torch.load(model_path))
def get_prediction(self, data_loader):
self.model.eval()
review_texts = []
prediction_probs = []
real_values = []
aspects = []
with torch.no_grad():
for t_batch, t_sample_batched in enumerate(data_loader):
t_sentence = t_sample_batched['raw_sentence']
t_aspect = t_sample_batched['aspect']
t_inputs = [t_sample_batched[col].to(self.opt.device) for col in self.opt.inputs_cols]
t_targets = t_sample_batched['polarity'].to(self.opt.device)
t_outputs = self.model(t_inputs)
# print(type(t_outputs))
# print(t_outputs.shape)
# print(t_outputs)
review_texts.extend(t_sentence)
# prediction_probs.extend(torch.argmax(t_outputs, -1))
prediction_probs.extend(t_outputs)
real_values.extend(t_targets)
aspects.extend(t_aspect)
prediction_probs = torch.stack(prediction_probs).cpu()
real_values = torch.stack(real_values).cpu()
print(len(review_texts))
print(type(prediction_probs))
p = prediction_probs.numpy()
print(type(p))
print(p.shape)
q = numpy.reshape(p, (668, 3))
print(q.shape)
print(q)
return review_texts, prediction_probs, real_values, aspects
def save_predictions(self):
test_data_loader = DataLoader(dataset=self.testset, batch_size=self.opt.batch_size, shuffle=False)
sentence, y_pred_probs, y_test, aspect = self.get_prediction(test_data_loader)
class_names = [0, 1, 2]
# csv_file = 'predictions/{}_predictions.csv'.format(self.opt.model_name)
#
# with open(csv_file, 'w', newline='') as pred_file:
# writer = csv.writer(pred_file)
# writer.writerow(['sentence', 'aspect', 'predicted sentiment', 'true sentiment'])
# for i in range(len(sentence)):
# writer.writerow([sentence[i], aspect[i], class_names[y_pred_probs[i]], class_names[y_test[i]]])
print('successfully wrote the csv file')
return y_pred_probs
def main(model):
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', default=model, type=str)
parser.add_argument('--dataset', default='law', type=str, help='twitter, restaurant, laptop')
parser.add_argument('--optimizer', default='adam', type=str)
parser.add_argument('--initializer', default='xavier_uniform_', type=str)
parser.add_argument('--learning_rate', default=2e-5, type=float, help='try 5e-5, 2e-5 for BERT, 1e-3 for others')
parser.add_argument('--dropout', default=0.1, type=float)
parser.add_argument('--l2reg', default=0.01, type=float)
parser.add_argument('--num_epoch', default=10, type=int, help='try larger number for non-BERT models')
parser.add_argument('--batch_size', default=16, type=int, help='try 16, 32, 64 for BERT models')
parser.add_argument('--log_step', default=5, type=int)
parser.add_argument('--embed_dim', default=300, type=int)
parser.add_argument('--hidden_dim', default=300, type=int)
parser.add_argument('--bert_dim', default=768, type=int)
parser.add_argument('--pretrained_bert_name', default='bert-base-uncased', type=str)
parser.add_argument('--max_seq_len', default=80, type=int)
parser.add_argument('--polarities_dim', default=3, type=int)
parser.add_argument('--hops', default=3, type=int)
parser.add_argument('--device', default='cpu', type=str, help='e.g. cuda:0')
parser.add_argument('--seed', default=None, type=int, help='set seed for reproducibility')
parser.add_argument('--valset_ratio', default=0, type=float,
help='set ratio between 0 and 1 for validation support')
# The following parameters are only valid for the lcf-bert model
parser.add_argument('--local_context_focus', default='cdm', type=str, help='local context focus mode, cdw or cdm')
parser.add_argument('--SRD', default=3, type=int,
help='semantic-relative-distance, see the paper of LCF-BERT model')
opt = parser.parse_args()
if opt.seed is not None:
random.seed(opt.seed)
numpy.random.seed(opt.seed)
torch.manual_seed(opt.seed)
torch.cuda.manual_seed(opt.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
model_classes = {
'lstm': LSTM,
'td_lstm': TD_LSTM,
'tc_lstm': TC_LSTM,
'gcn_bert': SDGCN,
'bert_atae_lstm': ATAE_LSTM,
'memnet': MemNet,
'ram_bert': RAM,
'cabasc': Cabasc,
'tnet_lf': TNet_LF,
'aoa': AOA,
'mgan': MGAN,
'bert_spc': BERT_SPC,
'aen_bert': AEN_BERT,
'lcf_bert': LCF_BERT,
# default hyper-parameters for LCF-BERT model is as follws:
# lr: 2e-5
# l2: 1e-5
# batch size: 16
# num epochs: 5
}
dataset_files = {
'law': {
'train': './datasets/semeval14/train.csv',
'test': './datasets/semeval14/test.csv'
}
}
input_colses = {
'lstm': ['text_raw_indices'],
'td_lstm': ['text_left_with_aspect_indices', 'text_right_with_aspect_indices'],
'tc_lstm': ['text_left_with_aspect_indices', 'text_right_with_aspect_indices', 'aspect_indices'],
'bert_atae_lstm': ['text_raw_indices', 'aspect_indices'],
'ian': ['text_raw_indices', 'aspect_indices'],
'gcn_bert': ['text_raw_bert_indices', 'aspect_bert_indices'],
'memnet': ['text_raw_without_aspect_indices', 'aspect_indices'],
'ram_bert': ['text_raw_indices', 'aspect_indices', 'text_left_indices'],
'cabasc': ['text_raw_indices', 'aspect_indices', 'text_left_with_aspect_indices',
'text_right_with_aspect_indices'],
'tnet_lf': ['text_raw_indices', 'aspect_indices', 'aspect_in_text'],
'aoa': ['text_raw_indices', 'aspect_indices'],
'mgan': ['text_raw_indices', 'aspect_indices', 'text_left_indices'],
'bert_spc': ['text_bert_indices', 'bert_segments_ids'],
'aen_bert': ['text_raw_bert_indices', 'aspect_bert_indices'],
'lcf_bert': ['text_bert_indices', 'bert_segments_ids', 'text_raw_bert_indices', 'aspect_bert_indices'],
}
initializers = {
'xavier_uniform_': torch.nn.init.xavier_uniform_,
'xavier_normal_': torch.nn.init.xavier_normal,
'orthogonal_': torch.nn.init.orthogonal_,
}
optimizers = {
'adadelta': torch.optim.Adadelta, # default lr=1.0
'adagrad': torch.optim.Adagrad, # default lr=0.01
'adam': torch.optim.Adam, # default lr=0.001
'adamax': torch.optim.Adamax, # default lr=0.002
'asgd': torch.optim.ASGD, # default lr=0.01
'rmsprop': torch.optim.RMSprop, # default lr=0.01
'sgd': torch.optim.SGD,
}
opt.model_class = model_classes[opt.model_name]
opt.dataset_file = dataset_files[opt.dataset]
opt.inputs_cols = input_colses[opt.model_name]
opt.initializer = initializers[opt.initializer]
opt.optimizer = optimizers[opt.optimizer]
opt.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') \
if opt.device is None else torch.device(opt.device)
return (opt)
def get_model(models):
opt_list = []
pred_list = []
for model in models:
opt = main(model)
opt_list.append(opt)
tokenizer = Tokenizer4Bert(opt.max_seq_len, opt.pretrained_bert_name)
bert = BertModel.from_pretrained(opt.pretrained_bert_name, output_hidden_states=True)
testset = ABSADataset(opt.dataset_file['test'], tokenizer)
for opt in opt_list:
if (opt.model_name=="bert_spc" or opt.model_name=="lcf_bert"):
bert1 = BertModel.from_pretrained(opt.pretrained_bert_name)
pred= Predictor(opt, tokenizer, bert1, testset)
else:
pred = Predictor(opt, tokenizer, bert, testset)
predictions = pred.save_predictions()
pred_list.append(predictions)
return pred_list