-
-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathblending.py
48 lines (40 loc) · 1.94 KB
/
blending.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from sklearn.base import BaseEstimator, TransformerMixin, clone, RegressorMixin
from sklearn.model_selection import train_test_split
import numpy as np
class BlendingModels(BaseEstimator, RegressorMixin, TransformerMixin):
def __init__(self, base_models, meta_model, holdout_pct=0.2, use_features_in_secondary=False):
self.base_models = base_models
self.meta_model = meta_model
self.holdout_pct = holdout_pct
self.use_features_in_secondary = use_features_in_secondary
def fit(self, X, y):
"""Fit all the models on the given dataset"""
self.base_models_ = [clone(x) for x in self.base_models]
self.meta_model_ = clone(self.meta_model)
X_train, X_holdout, y_train, y_holdout = train_test_split(X, y, test_size=self.holdout_pct)
holdout_predictions = np.zeros((X_holdout.shape[0], len(self.base_models)))
for i, model in enumerate(self.base_models_):
model.fit(X_train, y_train)
y_pred = model.predict(X_holdout)
holdout_predictions[:, i] = y_pred
if self.use_features_in_secondary:
self.meta_model_.fit(np.hstack((X_holdout, holdout_predictions)), y_holdout)
else:
self.meta_model_.fit(holdout_predictions, y_holdout)
return self
def predict(self, X):
meta_features = np.column_stack([
model.predict(X) for model in self.base_models_
])
if self.use_features_in_secondary:
return self.meta_model_.predict(np.hstack((X, meta_features)))
else:
return self.meta_model_.predict(meta_features)
def predict_proba(self, X):
meta_features = np.column_stack([
model.predict(X) for model in self.base_models_
])
if self.use_features_in_secondary:
return self.meta_model_.predict_proba(np.hstack((X, meta_features)))
else:
return self.meta_model_.predict_proba(meta_features)