-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwindow.jsfx-inc
621 lines (482 loc) · 15.4 KB
/
window.jsfx-inc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
desc:Collection of window functions
// Copyright (C) 2015-2017 Theo Niessink <[email protected]>
// This work is free. You can redistribute it and/or modify it under the
// terms of the Do What The Fuck You Want To Public License, Version 2,
// as published by Sam Hocevar. See http://www.wtfpl.net/ for more details.
// Window functions from Wikipedia (unless noted otherwise).
// http://en.wikipedia.org/wiki/Window_function
/* Example
desc:Low-pass windowed FIR filter
slider1:1000<20,20000,1>Cutoff (Hz)
slider2:1<0,1,1{Rectangle,Blackman}>Window
import Tale/window.jsfx-inc
@init
fir_len = floor(64 / 44100 * srate + 0.5);
in_ptr = in_buf = 0;
fir_buf = in_buf + fir_len * 2;
pdc_bot_ch = 0; pdc_top_ch = 2;
pdc_delay = floor(fir_len / 2);
@slider
// Source: http://www.labbookpages.co.uk/audio/firWindowing.html
m = fir_len - 1;
ft = min(0.5, slider1 / srate);
n = avg = 0;
loop(fir_len,
// Low-pass filter.
lpf = n != m/2 ? sin(2*$pi*ft*(n - m/2)) / ($pi*(n - m/2)) : 2*ft;
// Apply window.
slider2 >= 0.5 ? lpf *= wnd_blackman(n, fir_len);
avg += lpf;
fir_buf[n] = lpf;
n += 1;
);
scale = 1/avg;
@sample
// Buffer input.
(in_ptr -= 1) < in_buf ? (
in_ptr = in_buf + fir_len;
memcpy(in_ptr + 1, in_buf, m);
);
in_ptr[] = 0.5*(spl0 + spl1);
// Convolve with FIR filter.
sum = n = 0;
loop(fir_len,
sum += fir_buf[n] * in_ptr[n];
n += 1;
);
spl0 = spl1 = sum * scale;
Window Functions
* wnd_rect(i, n) -- Rectangular
* wnd_tri(i, n, l) -- Triangular
* wnd_bartlett(i, n) -- Bartlett
* wnd_parzen(i, n) -- Parzen
* wnd_welch(i, n) -- Welch
* wnd_hann(i, n) -- Hann
* wnd_hamming(i, n[, alpha, beta]) -- Hamming (default: alpha=0.54, beta=0.46)
* wnd_cos(i, n, a0..a2/a3/a4) -- Higher-order generalized cosine
* wnd_blackman(i, n[, alpha]) -- Blackman (default: alpha=0.16)
* wnd_nuttall(i, n) -- Nuttall
* wnd_blackman_nuttall(i, n) -- Blackman-Nuttall
* wnd_blackman_harris(i, n) -- Blackman-Harris
* wnd_flat_top(i, n) -- SRS flat top
* wnd_rife_vincent1(i, n, order) -- Rife-Vincent class I
* wnd_rife_vincent2(i, n, order, rho) -- Rife-Vincent class II
* wnd_rife_vincent3(i, n, order) -- Rife-Vincent class III
* wnd_pow_cos(i, n, alpha) -- Power-of-cosine
* wnd_cos(i, n) -- Cosine
* wnd_bohman(i, n) -- Bohman
* wnd_gauss(i, n, sigma) -- Gaussian
* wnd_gauss_conf(i, n, sigma) -- Confined Gaussian
* wnd_gauss(i, n, sigma, p) -- Generalized normal
* wnd_tukey(i, n, alpha) -- Tukey
* wnd_planck_taper(i, n, eps) -- Planck-taper
* wnd_kaiser(i, n, alpha) -- Kaiser
* wnd_dolph_chebyshev(i, n, alpha) -- Dolph-Chebyshev
* wnd_poisson(i, n, alpha) -- Poisson
* wnd_bartlett_hann(i, n) -- Bartlett-Hann
* wnd_planck_bessel(i, n, eps, alpha) -- Planck-Bessel
* wnd_hann_poisson(i, n, alpha) -- Hann-Poisson
* wnd_lanczos(i, n) -- Lanczos
* wnd_cauchy(i, n, alpha) -- Cauchy
* wnd_connes(i, n, alpha) -- Connes
Example: y = wnd_blackman(0, 1024);
Returns the normalized window function for integers i = [0..n-1],
n >= 16.
Miscellaneous Functions
* _wnd_i0(x)
Example: y = _wnd_i0(3*$pi);
Approximates the zero-th order modified Bessel function of the first
kind.
* _wnd_kaiser(i, n, alpha)
Example: y = _wnd_kaiser(0, 1024, 3);
Returns the non-normalized Kaiser window function. To normalize divide
by _wnd_i0($pi*alpha).
*/
@init
// Rectangular (aka Dirichlet)
function wnd_rect(i, n)
(
1;
);
// Triangular
// l == n || l == n+1 || l = n-1
function wnd_tri(i, n, l)
(
1 - abs((2*i - (n - 1)) / l);
);
// Bartlett (aka Fejer)
// n >= 3
function wnd_bartlett(i, n)
(
// wnd_tri(i, n, n - 1);
1 - abs(2*i / (n - 1) - 1);
);
// Parzen (aka de la Vallee Poussin)
function wnd_parzen(i, n)
(
n *= 0.5;
i = abs(i - (n - 0.5));
i < 0.5*n ? (
i = i / n;
1 - 6*i*i * (1 - i);
) : (
i = 1 - i / n;
2*i*i*i;
);
);
// Welch (aka Riesz)
function wnd_welch(i, n)
(
1 - sqr(2*i / (n - 1) - 1);
);
// Generalized Hamming
// alpha >= 0.5 && alpha <= 1.0, beta = 1.0 - alpha
function wnd_hamming(i, n, alpha, beta)
(
alpha - beta * cos(2*$pi * i / (n - 1));
);
// Hann (aka Hanning)
function wnd_hann(i, n)
(
// wnd_hamming(i, n, 0.5, 0.5);
0.5 * (1 - cos(2*$pi * i / (n - 1)));
);
// Hamming
function wnd_hamming(i, n)
(
wnd_hamming(i, n, 0.54, 0.46); // Original
// wnd_hamming(i, n, 25/46, 21/46); // Exact
// wnd_hamming(i, n, 0.53836, 0.46164); // Optimal
);
// Higher-order generalized cosine
function wnd_cos(i, n, a0, a1, a2)
(
i *= 2*$pi / (n - 1);
a0 - a1 * cos(i) + a2 * cos(2*i);
);
function wnd_cos(i, n, a0, a1, a2, a3)
(
i *= 2*$pi / (n - 1);
a0 - a1 * cos(i) + a2 * cos(2*i) - a3 * cos(3*i);
);
function wnd_cos(i, n, a0, a1, a2, a3, a4)
(
i *= 2*$pi / (n - 1);
a0 - a1 * cos(i) + a2 * cos(2*i) - a3 * cos(3*i) + a4 * cos(4*i);
);
// Blackman
// alpha >= -0.25 && alpha <= 0.25
function wnd_blackman(i, n, alpha)
(
// wnd_cos(i, n, 0.5 * (1 - alpha), 0.5, 0.5 * alpha);
i *= 2*$pi / (n - 1);
0.5 * (1 - cos(i) - alpha * (1 - cos(2*i)));
);
function wnd_blackman(i, n)
(
// wnd_blackman(i, n, 0.16); // Approximation
// wnd_cos(i, n, 7938/18608, 9240/18608, 1430/18608); // Exact
// Approximation
i *= 2*$pi / (n - 1);
0.42 - 0.5 * cos(i) + 0.08 * cos(2*i);
);
// Nuttall
function wnd_nuttall(i, n)
(
wnd_cos(i, n, 0.355768, 0.487396, 0.144232, 0.012604);
);
// Blackman-Nuttall
function wnd_blackman_nuttall(i, n)
(
wnd_cos(i, n, 0.3635819, 0.4891775, 0.1365995, 0.0106411);
);
// Blackman-Harris
function wnd_blackman_harris(i, n)
(
wnd_cos(i, n, 0.35875, 0.48829, 0.14128, 0.01168);
);
// Flat top
function wnd_flat_top(i, n)
(
// SRS flat top from Wikipedia.
// http://en.wikipedia.org/wiki/Window_function#Flat_top_window
wnd_cos(i, n, 1/4.636, 1.93/4.636, 1.29/4.636, 0.388/4.636, 0.028/4.636);
// Alternate flat top coefficients from:
// http://janroman.dhis.org/AFI/Python/spectrum/src/spectrum/window.py
// wnd_cos(i, n, 0.21557895, 0.41663158, 0.277263158, 0.083578947, 0.006947368);
// wnd_cos(i, n, 1/4.6402, 1.93/4.6402, 1.29/4.6402, 0.388/4.6402, 0.0322/4.6402);
);
// Rife-Vincent class I
function wnd_rife_vincent1(i, n, order)
local(scale, sum, prod, j, k)
(
// order == 1 ? wnd_hann(i, n) :
// order == 2 ? wnd_cos(i, n, 0.375, 0.5, 0.125) :
// order == 3 ? wnd_cos(i, n, 0.3125, 0.46875, 0.1875, 0.03125) :
// order == 4 ? wnd_cos(i, n, 0.2734375, 0.4375, 0.21875, 0.0625, 0.0078125);
// Source: http://www.mathworks.com/matlabcentral/fileexchange/46092-window-utilities/content/rifevwin.m
i *= 2*$pi / (n - 1);
scale = sum = 0;
j = 1;
loop(order,
prod = k = 1;
loop(j,
prod *= (order - k + 1) / (order + k);
k += 1;
);
scale += prod;
j & 1 ? prod = -prod;
sum += prod * cos(i*j);
j += 1;
);
(1 + 2*sum) / (1 + 2*scale);
);
// Rife-Vincent class II
// rho = 10^(dB / 20)
function wnd_rife_vincent2(i, n, order, rho)
local(lambda, sig2, scale, sum, prod, j, k)
(
rho = 1/rho;
lambda = 1/$pi * log(rho + sqrt(sqr(rho) - 1)); // acosh(rho)/$pi
sig2 = sqr(order + 1) / (sqr(lambda) + sqr(order + 0.5));
i *= 2*$pi / (n - 1);
scale = sum = j = 1;
loop(order,
prod = k = 1;
loop(order,
prod *= 1 - sqr(j) / (sig2 * (sqr(lambda) + sqr(k - 0.5)));
k != j ? prod /= 1 - sqr(j) / sqr(k);
k += 1;
);
scale += abs(prod);
sum -= prod * cos(i*j);
j += 1;
);
sum / scale;
);
// Rife-Vincent class III
function wnd_rife_vincent3(i, n, order)
local(scale, sum, prod, j, k)
(
order == 1 ? wnd_hann(i, n) :
/* order == 2 ? wnd_blackman(i, n) : */ (
i *= 2*$pi / (n - 1);
scale = sum = 0;
j = 1;
loop(order >= 3 ? order -= 2 : 0,
prod = k = 1;
loop(j,
prod *= (order - k + 1) / (order + k);
k += 1;
);
scale += prod;
j & 1 ? prod = -prod;
sum += prod * cos(i*j);
j += 1;
);
(1 + 2*sum) / (1 + 2*scale) * (1/2.3937 - 1.19685/2.3937 * cos(i) + 0.19685/2.3937 * cos(2*i));
));
// Power-of-cosine
// alpha >= 0
function wnd_pow_cos(i, n, alpha)
(
sin($pi * i / (n - 1))^alpha;
);
// Cosine (aka sine)
function wnd_cos(i, n)
(
// wnd_pow_cos(i, n, 1);
sin($pi * i / (n - 1));
);
// Bohman
function wnd_bohman(i, n)
(
// Source: http://janroman.dhis.org/AFI/Python/spectrum/src/spectrum/window.py
i = abs(2*i / (n - 1) - 1);
(1 - i) * cos($pi * i) + sin($pi * i) / $pi;
);
// Gaussian
// sigma > 0.0 && sigma <= 0.5
function wnd_gauss(i, n, sigma)
(
n = 0.5 * (n - 1);
exp(-0.5 * sqr((i - n) / (sigma * n)));
);
// Confined Gaussian (approximation)
function _wnd_g(x, n, sigma)
(
exp(-sqr((x - 0.5*(n - 1)) / (2*sigma)));
);
function wnd_gauss_conf(i, n, sigma)
(
sigma *= n;
_wnd_g(i, n, sigma) - _wnd_g(-0.5, n, sigma) * (_wnd_g(i + n, n, sigma) + _wnd_g(i - n, n, sigma)) / (_wnd_g(-0.5 + n, n, sigma) + _wnd_g(-0.5 - n, n, sigma));
);
// Generalized normal
// p > 0 && !(p & 1)
function wnd_gauss(i, n, sigma, p)
(
n = 0.5 * (n - 1);
exp(-(((i - n) / (sigma * n))^p));
);
// Tukey
// alpha > 0.0 && alpha <= 1.0
function wnd_tukey(i, n, alpha)
local(m)
(
n -= 1;
alpha *= 0.5;
m = alpha * n;
/* i >= 0 && */ i < m ? 0.5 * (1 + cos($pi * (i / m - 1))) :
i <= n - m ? 1 :
/* i <= n ? */ 0.5 * (1 + cos($pi * (i / m - 1/alpha + 1)));
);
// Planck-taper
// eps >= 0.0 && eps < 0.5
function wnd_planck_taper(i, n, eps)
local(z)
(
n -= 1;
/* i >= 0 && */ i < eps * n ? z = 2 * i/n :
i < (1 - eps) * n ? n = 0 :
/* i <= (n - 1) ? */ z = 2*(1 - i/n);
n ? 1/(exp(2*eps * (1/z + 1/(z - 2*eps))) + 1) : 1;
);
// Kaiser (aka Kaiser-Bessel)
// alpha >= 0.0
function _wnd_i0(x)
local(x2, fact, y, i)
(
x2 = x = 0.25*x*x;
fact = y = i = 1;
loop(20,
y += x / (fact*fact);
x *= x2;
fact *= (i += 1);
);
y;
);
function _wnd_kaiser(i, n, alpha)
(
_wnd_i0($pi * alpha * sqrt(1 - sqr(2*i / (n - 1) - 1)));
);
function wnd_kaiser(i, n, alpha)
(
_wnd_kaiser(i, n, alpha) / _wnd_i0($pi * alpha);
);
// Dolph-Chebyshev
function wnd_dolph_chebyshev(i, n, alpha)
local(beta, scale, sum, j, m, x, y)
(
// Source: http://practicalcryptography.com/miscellaneous/machine-learning/implementing-dolph-chebyshev-window/
alpha = exp(log(10) * alpha);
// beta = cosh(1/(n - 1) * acosh(alpha))
beta = exp(1/(n - 1) * log(alpha + sqrt(sqr(alpha) - 1)));
beta = 0.5*(beta + 1/beta);
// Really, really slow!
scale = sum = 0;
j = 1;
m = (n & 1 ? n - 1 : n) / 2;
loop(m,
x = $pi * j/n;
y = beta * cos(x);
// Chebyshev polynomial of first kind.
abs(y) <= 1 ? (
y = cos((n - 1) * acos(y));
) : (
// y = cosh((n - 1) * acosh(y))
y = exp((n - 1) * log(y + sqrt(sqr(y) - 1)));
y = 0.5*(y + 1/y);
);
scale += y;
sum += y * cos(2*x * (i - m));
j += 1;
);
(alpha + 2*sum) / (alpha + 2*scale);
);
// Poisson (exponential)
// alpha >= 0.0
function wnd_poisson(i, n, alpha)
(
// Source: http://janroman.dhis.org/AFI/Python/spectrum/src/spectrum/window.py
exp(-2*abs(n * (i / (n - 1) - 0.5)) / n * alpha);
);
// Bartlett-Hann
function wnd_bartlett_hann(i, n)
(
i /= n - 1;
0.62 - 0.48 * abs(i - 0.5) - 0.38 * cos(2*$pi * i);
);
// Planck-Bessel
function wnd_planck_bessel(i, n, eps, alpha)
(
wnd_planck_taper(i, n, eps) * wnd_kaiser(i, n, alpha);
);
// Hann-Poisson (aka Poisson-Hanning)
function wnd_hann_poisson(i, n, alpha)
(
// wnd_hann(i, n) * wnd_poisson(i, n, alpha)
i /= n - 1;
0.5 * (1 - cos(2*$pi * i)) * exp(-2*abs(n * (i - 0.5)) / n * alpha);
);
// Cauchy
// alpha >= 0.0
function wnd_cauchy(i, n, alpha)
(
// Source: http://janroman.dhis.org/AFI/Python/spectrum/src/spectrum/window.py
1/(1 + sqr(2*alpha * (i / (n - 1) - 0.5)));
);
// Lanczos (aka Riemann)
function wnd_lanczos(i, n)
local(x)
(
x = $pi * (2*i / (n - 1) - 1);
x < 0 || x > 0 ? sin(x)/x : 1;
);
// Connes
// alpha >= 1
function wnd_connes(i, n, alpha)
(
// Source: https://reference.wolfram.com/language/ref/ConnesWindow.html
alpha = sqr(alpha);
sqr(-4*sqr(i / (n - 1) - 0.5) + alpha) / sqr(alpha);
);
// Legacy
function wnd_gaussian(i, n, sigma) ( wnd_gauss(i, n, sigma) );
function wnd_gaussian(i, n, sigma, p) ( wnd_gauss(i, n, sigma, p) );
function wnd_rife_vincent(i, n, order) ( wnd_rife_vincent1(i, n, order) );
function wnd_tri_avg(n, l) ( l == n + 1 ? 0.5 + 0.5 / (2 * ((n / 2)|0) + 1) : l == n-1 ? 0.5 - 0.5 / (2 * (((n + 1) / 2)|0) - 1) : l == n ? ( n & 1 ? 0.5 + 0.5 / sqr(n) : 0.5 ) );
function wnd_bartlett_avg(n) ( 0.5 - 0.5 / (2 * (((n + 1) / 2)|0) - 1) );
function wnd_parzen_avg(n) ( n & 1 ? 0.375 + 0.625 / sqr(sqr(n)) : n & 3 ? 0.375 - 2 / sqr(sqr(n)) : 0.375 );
function wnd_welch_avg(n) ( 2/3 - 2/3 / (n - 1) );
function wnd_hamming_avg(n, alpha, beta) ( /* n < 3 ? alpha - beta : */ alpha - beta / n );
function wnd_hann_avg(n) ( wnd_hamming_avg(n, 0.5, 0.5) );
function wnd_hamming_avg(n) ( wnd_hamming_avg(n, 0.54, 0.46) );
function wnd_cos_avg(n, a0, a1, a2) ( /* n < 3 ? a0 - a1 + a2 : n < 4 ? a0 - 1/3 * a1 + a2 : */ a0 - (a1 - a2) / n );
function wnd_cos_avg(n, a0, a1, a2, a3) ( /* n < 3 ? a0 - a1 + a2 - a3 : n < 4 ? a0 - 1/3 * (a1 + a3) + a2 : n < 5 ? a0 - 0.25 * (a1 - a2) - a3 : */ a0 - (a1 - a2 + a3) / n );
function wnd_cos_avg(n, a0, a1, a2, a3, a4) ( /* n < 3 ? a0 - a1 + a2 - a3 + a4 : n < 4 ? a0 - 1/3 * (a1 + a3) + a2 + a4 : n < 5 ? a0 - 0.25 * (a1 - a2 - a4) - a3 : n < 6 ? a0 - 0.2 * (a1 - a2 + a3) + a4 : */ a0 - (a1 - a2 + a3 - a4) / n );
function wnd_blackman_avg(n, alpha) ( /* n < 3 ? 0 : n < 4 ? 1/3 : */ 0.5 * (1 - alpha) * (1 - 1/n) );
function wnd_blackman_avg(n) ( /* n < 3 ? 0 : n < 4 ? 1/3 : */ 0.42 - 0.42/n );
function wnd_nuttall_avg(n) ( wnd_cos_avg(n, 0.355768, 0.487396, 0.144232, 0.012604) );
function wnd_blackman_nuttall_avg(i, n) ( wnd_cos_avg(n, 0.3635819, 0.4891775, 0.1365995, 0.0106411) );
function wnd_blackman_harris_avg(n) ( wnd_cos_avg(n, 0.35875, 0.48829, 0.14128, 0.01168) );
function wnd_flat_top_avg(n) ( wnd_cos_avg(n, 1/4.636, 1.93/4.636, 1.29/4.636, 0.388/4.636, 0.028/4.636) );
function wnd_bartlett_hann_avg(n) ( 0.12 - 0.12/n );
function wnd_rife_vincent_avg(n, order)
local(scale, sum, prod, j, k)
(
scale = sum = 0;
j = 1;
loop(order,
prod = k = 1;
loop(j,
prod *= (order - k + 1) / (order + k);
k += 1;
);
scale += prod;
j & 1 ? prod = -prod;
sum += prod;
j += 1;
);
(1 + 2*sum / n) / (1 + 2*scale);
);