You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi! I have trouble reproducing the result for the single environment run_and_gun. I run python run_single.py --scenario run_and_gun and get the following prints: (after 15 epochs, the training success is still 0)
2024-04-10 07:32:16.450011: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-04-10 07:32:16.630269: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/lib64-nvidia
2024-04-10 07:32:16.630319: I tensorflow/compiler/xla/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
2024-04-10 07:32:17.626895: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/lib64-nvidia
2024-04-10 07:32:17.627104: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/lib64-nvidia
2024-04-10 07:32:17.627124: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
2024-04-10 07:32:26.142719: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/lib/python3.10/dist-packages/cv2/../../lib64:/usr/lib64-nvidia
2024-04-10 07:32:26.142959: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcublas.so.11'; dlerror: libcublas.so.11: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/lib/python3.10/dist-packages/cv2/../../lib64:/usr/lib64-nvidia
2024-04-10 07:32:26.143142: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcublasLt.so.11'; dlerror: libcublasLt.so.11: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/lib/python3.10/dist-packages/cv2/../../lib64:/usr/lib64-nvidia
2024-04-10 07:32:26.143322: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcufft.so.10'; dlerror: libcufft.so.10: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/lib/python3.10/dist-packages/cv2/../../lib64:/usr/lib64-nvidia
2024-04-10 07:32:26.765469: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcusparse.so.11'; dlerror: libcusparse.so.11: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/lib/python3.10/dist-packages/cv2/../../lib64:/usr/lib64-nvidia
2024-04-10 07:32:26.769994: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1934] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
Skipping registering GPU devices...
2024-04-10 07:32:26.770554: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
Saving config:
{
"activation": "lrelu",
"agent_policy_exploration": false,
"alpha": "auto",
"augment": false,
"augmentation": null,
"batch_size": 128,
"buffer_type": "fifo",
"cl_method": null,
"cl_reg_coef": 0.0,
"clipnorm": null,
"envs": [
"default"
],
"episodic_batch_size": 0,
"episodic_mem_per_task": 0,
"episodic_memory_from_buffer": true,
"exploration_kind": null,
"frame_height": 84,
"frame_skip": 4,
"frame_stack": 4,
"frame_width": 84,
"gamma": 0.99,
"gpu": null,
"group_id": "default_group",
"hidden_sizes": [
256,
256
],
"hide_task_id": false,
"log_every": 1000,
"logger_output": [
"tsv",
"tensorboard"
],
"lr": 0.001,
"lr_decay": "linear",
"lr_decay_rate": 0.1,
"lr_decay_steps": 100000,
"model_path": null,
"multihead_archs": true,
"n_updates": 50,
"no_test": false,
"num_repeats": 1,
"packnet_retrain_steps": 0,
"penalty_ammo_used": -0.1,
"penalty_death": -1.0,
"penalty_health_dtc": -1.0,
"penalty_health_has": -5.0,
"penalty_health_hg": -0.01,
"penalty_lava": -0.1,
"penalty_passivity": -0.1,
"penalty_projectile": -0.01,
"random_order": false,
"record": false,
"record_every": 100,
"regularize_critic": false,
"render": false,
"render_sleep": 0.0,
"replay_size": 50000,
"reset_buffer_on_task_change": true,
"reset_critic_on_task_change": false,
"reset_optimizer_on_task_change": true,
"resolution": null,
"reward_delivery": 30.0,
"reward_frame_survived": 0.01,
"reward_health_has": 5.0,
"reward_health_hg": 15.0,
"reward_kill_chain": 5.0,
"reward_kill_dtc": 1.0,
"reward_kill_rag": 5.0,
"reward_on_platform": 0.1,
"reward_platform_reached": 1.0,
"reward_scaler_pitfall": 0.1,
"reward_scaler_traversal": 0.001,
"reward_switch_pressed": 15.0,
"reward_weapon_ad": 15.0,
"save_freq_epochs": 25,
"scenarios": [
"run_and_gun"
],
"seed": 0,
"sequence": null,
"sparse_rewards": false,
"start_from": 0,
"start_steps": 10000,
"steps_per_env": 200000,
"target_output_std": 0.089,
"test": true,
"test_envs": [],
"test_episodes": 3,
"test_only": false,
"update_after": 5000,
"update_every": 500,
"use_layer_norm": true,
"use_lstm": false,
"variable_queue_length": 5,
"vcl_first_task_kl": false,
"video_folder": "videos",
"with_wandb": false
}
Logging data to ./logs/default_group/2024_04_10__07_32_36_eK6l57
/usr/local/lib/python3.10/dist-packages/gym/core.py:317: DeprecationWarning: WARN: Initializing wrapper in old step API which returns one bool instead of two. It is recommended to set new_step_api=True to use new step API. This will be the default behaviour in future.
deprecation(
/usr/local/lib/python3.10/dist-packages/gymnasium/core.py:311: UserWarning: WARN: env.num_tasks to get variables from other wrappers is deprecated and will be removed in v1.0, to get this variable you can do env.unwrapped.num_tasks for environment variables or env.get_wrapper_attr('num_tasks') that will search the reminding wrappers.
logger.warn(
/usr/local/lib/python3.10/dist-packages/gymnasium/core.py:311: UserWarning: WARN: env.get_active_env to get variables from other wrappers is deprecated and will be removed in v1.0, to get this variable you can do env.unwrapped.get_active_env for environment variables or env.get_wrapper_attr('get_active_env') that will search the reminding wrappers.
logger.warn(
2024-04-10 07:32:37 - Observations shape: (4, 84, 84, 3)
2024-04-10 07:32:37 - Actions shape: 12
/usr/local/lib/python3.10/dist-packages/gymnasium/core.py:311: UserWarning: WARN: env.task_id to get variables from other wrappers is deprecated and will be removed in v1.0, to get this variable you can do env.unwrapped.task_id for environment variables or env.get_wrapper_attr('task_id') that will search the reminding wrappers.
logger.warn(
/usr/local/lib/python3.10/dist-packages/gymnasium/core.py:311: UserWarning: WARN: env.cur_seq_idx to get variables from other wrappers is deprecated and will be removed in v1.0, to get this variable you can do env.unwrapped.cur_seq_idx for environment variables or env.get_wrapper_attr('cur_seq_idx') that will search the reminding wrappers.
logger.warn(
/usr/local/lib/python3.10/dist-packages/gymnasium/core.py:311: UserWarning: WARN: env.name to get variables from other wrappers is deprecated and will be removed in v1.0, to get this variable you can do env.unwrapped.name for environment variables or env.get_wrapper_attr('name') that will search the reminding wrappers.
logger.warn(
2024-04-10 07:32:39 - Episode 1 duration: 0.9786. Buffer capacity: 0.63% (313/50000)
/usr/local/lib/python3.10/dist-packages/gymnasium/core.py:311: UserWarning: WARN: env.get_statistics to get variables from other wrappers is deprecated and will be removed in v1.0, to get this variable you can do env.unwrapped.get_statistics for environment variables or env.get_wrapper_attr('get_statistics') that will search the reminding wrappers.
logger.warn(
/usr/local/lib/python3.10/dist-packages/gymnasium/core.py:311: UserWarning: WARN: env.clear_episode_statistics to get variables from other wrappers is deprecated and will be removed in v1.0, to get this variable you can do env.unwrapped.clear_episode_statistics for environment variables or env.get_wrapper_attr('clear_episode_statistics') that will search the reminding wrappers.
logger.warn(
2024-04-10 07:32:40 - Episode 2 duration: 0.9469. Buffer capacity: 1.25% (626/50000)
2024-04-10 07:32:41 - Episode 3 duration: 0.9312. Buffer capacity: 1.88% (939/50000)
My apologies that I've completely missed this issue. In case this is still relevant, from the logs I cannot determine much to be fundamentally wrong, apart from that tensorflow was not able to register a GPU (either due to a lack of one or because CUDA is not properly integrated). This slows down the process a lot. From the logs you can see that it takes ~2 minutes for a single policy update. This is normally a matter of seconds on a GPU. Moreover, it may take more than 15 epochs before the agent has learned any meaningful behavior. I suggest ensuring that CUDA is properly installed to support using a GPU and then trying again.
Hi! I have trouble reproducing the result for the single environment run_and_gun. I run
python run_single.py --scenario run_and_gun
and get the following prints: (after 15 epochs, the training success is still 0)The text was updated successfully, but these errors were encountered: