-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
126 lines (100 loc) · 3.77 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import openai
import pinecone
import itertools
from dotenv import load_dotenv
from flask import Flask, request, render_template, redirect, url_for, session
from embedstore import load_embedding
load_dotenv()
app = Flask(__name__)
app.secret_key = os.getenv("SECRET_KEY")
openai.api_key = os.getenv("OPENAI_API_KEY")
EMBEDDING_DIMENSION = 1536
INDEX_NAME = "naval-almanack-book"
pinecone.init(api_key=os.getenv("PINECONE_API_KEY"), environment=os.getenv("PINECONE_ENV"))
def get_embedding(chunk):
"""Get embedding using OpenAI"""
response = openai.Embedding.create(
input=chunk,
model="text-embedding-ada-002",
)
embedding = response['data'][0]['embedding']
return embedding
def get_response_from_openai(query, documents):
"""Get ChatGPT api response"""
prompt = get_prompt_for_query(query, documents)
messages = [{"role": "user", "content": prompt}]
response = openai.ChatCompletion.create(
model='gpt-3.5-turbo',
messages=messages,
temperature=0,
max_tokens=800,
top_p=1,
)
return response["choices"][0]["message"]["content"]
def create_pinecone_index(index_name):
"""Create Pinecone index if it doesn't exists"""
existing_indexes = pinecone.list_indexes()
if index_name not in existing_indexes:
print(f"{index_name} index not found in pinecone. Creating it...")
pinecone.create_index(index_name, dimension=EMBEDDING_DIMENSION)
return pinecone.Index(index_name)
def chunks(iterable, batch_size=100):
"""A helper function to break an iterable into chunks of size batch_size."""
it = iter(iterable)
chunk = tuple(itertools.islice(it, batch_size))
while chunk:
yield chunk
chunk = tuple(itertools.islice(it, batch_size))
def get_prompt_for_query(query, documents):
"""Build prompt for question answering"""
template = """
You are given a paragraph and a query. You need to answer the query on the basis of paragraph. If the answer is not contained within the text below, say \"Sorry, I don't know. Please try again.\"\n\nP:{documents}\nQ: {query}\nA:
"""
final_prompt = template.format(
documents=documents,
query=query
)
return final_prompt
def search_for_query(query):
"""Main function to search answer for query"""
output = {}
query_embedding = get_embedding(query)
print(f"Embedding generated for {query}")
results = index.query(
vector=query_embedding,
top_k=3,
include_values=False,
include_metadata=True,
)
documents = [
match['metadata']['document'] for match in results['matches']
]
documents_as_str = "\n".join(documents)
response = get_response_from_openai(query, documents_as_str)
print(f"Final response received from openai.")
output["response"] = response
output["documents"] = documents
return output
index = create_pinecone_index(INDEX_NAME)
result = load_embedding(os.getenv("EMBEDDING_ID"), embed_for="chroma")
doc_ids = result["ids"]
embeddings = result["embeddings"]
documents = result["documents"]
final_data = []
for idx, doc_id in enumerate(doc_ids):
final_data.append((doc_id, embeddings[idx], {"document": documents[idx]}))
for ids_vectors_chunk in chunks(final_data, batch_size=50):
index.upsert(vectors=ids_vectors_chunk)
print(pinecone.describe_index(INDEX_NAME))
@app.route('/', methods=['GET', 'POST'])
def run_bot():
if request.method == 'POST':
query = request.form.get('query')
result = search_for_query(query)
session['result'] = result
session['query'] = query
return redirect(url_for('run_bot'))
return render_template('index.html', query=session.get("query"), result=session.get("result"))
if __name__ == '__main__':
app.run()