-
Notifications
You must be signed in to change notification settings - Fork 8
/
arguments.py
executable file
·458 lines (410 loc) · 24.9 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""argparser configuration"""
import argparse
import os
import torch
import deepspeed
import json
from utils import get_hostname
def add_model_config_args(parser):
"""Model arguments"""
group = parser.add_argument_group('model', 'model configuration')
group.add_argument('--transformer-xl', action='store_true', help='use transformer-xl for training')
group.add_argument('--pretrained-bert', action='store_true',
help='use a pretrained bert-large-uncased model instead'
'of initializing from scratch. See '
'--tokenizer-model-type to specify which pretrained '
'BERT model to use')
group.add_argument('--encoder-decoder', action='store_true',
help="use the encoder-decoder architecture for blocklm")
group.add_argument('--attention-dropout', type=float, default=0.1,
help='dropout probability for attention weights')
group.add_argument('--num-attention-heads', type=int, default=16,
help='num of transformer attention heads')
group.add_argument('--hidden-size', type=int, default=1024,
help='tansformer hidden size')
group.add_argument('--num-layers', type=int, default=24,
help='num decoder layers')
group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
help='layer norm epsilon')
group.add_argument('--hidden-dropout', type=float, default=0.1,
help='dropout probability for hidden state transformer')
group.add_argument('--max-sequence-length', type=int, default=512,
help='maximum number of position embeddings to use')
group.add_argument('--vocab-size', type=int, default=0,
help='vocab size to use for non-character-level '
'tokenization. This value will only be used when '
'creating a tokenizer')
group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
help='Pad the vocab size to be divisible by this value.'
'This is added for computational efficieny reasons.')
group.add_argument('--sandwich-ln', action='store_true',
help='add sandwich ln in cogview.')
group.add_argument('--deep-init', action='store_true',
help='initialize bert model similar to gpt2 model.'
'scales initialization of projection layers by a '
'factor of 1/sqrt(2N). Necessary to train bert '
'models larger than BERT-Large.')
group.add_argument('--attention-scale', type=float, default=1.0)
return parser
def add_training_args(parser):
"""Training arguments."""
group = parser.add_argument_group('train', 'training configurations')
group.add_argument('--experiment-name', type=str, default="CogView",
help="The experiment name for summary and checkpoint")
group.add_argument('--batch-size', type=int, default=4,
help='Data Loader batch size')
group.add_argument('--weight-decay', type=float, default=0.01,
help='weight decay coefficient for L2 regularization')
group.add_argument('--checkpoint-activations', action='store_true',
help='checkpoint activation to allow for training '
'with larger models and sequences')
group.add_argument('--checkpoint-num-layers', type=int, default=1,
help='chunk size (number of layers) for checkpointing')
group.add_argument('--train-iters', type=int, default=1000000,
help='total number of iterations to train over all training runs')
group.add_argument('--log-interval', type=int, default=100,
help='report interval')
group.add_argument('--exit-interval', type=int, default=None,
help='Exit the program after this many new iterations.')
group.add_argument('--summary-dir', type=str, default="", help="The directory to store the summary")
group.add_argument('--seed', type=int, default=1234,
help='random seed')
# Learning rate.
group.add_argument('--lr-decay-iters', type=int, default=None,
help='number of iterations to decay LR over,'
' If None defaults to `--train-iters`*`--epochs`')
group.add_argument('--lr-decay-style', type=str, default='linear',
choices=['constant', 'linear', 'cosine', 'exponential'],
help='learning rate decay function')
group.add_argument('--lr-decay-ratio', type=float, default=0.0)
group.add_argument('--lr', type=float, default=1.0e-4,
help='initial learning rate')
group.add_argument('--warmup', type=float, default=0.01,
help='percentage of data to warmup on (.01 = 1% of all '
'training iters). Default 0.01')
# model checkpointing
group.add_argument('--save', type=str, default=None,
help='Output directory to save checkpoints to.')
group.add_argument('--load', type=str, default=None,
help='Path to a directory containing a model checkpoint.')
group.add_argument('--old-checkpoint', action='store_true', help='The checkpoint is generated by old checkpoint')
group.add_argument('--save-interval', type=int, default=5000,
help='number of iterations between saves')
group.add_argument('--mode', type=str,
default='pretrain',
choices=['pretrain',
'finetune',
'inference'
],
help='what type of task to use, will influence auto-warmup, exp name, iteration')
group.add_argument('--resume-dataloader', action='store_true',
help='Resume the dataloader when resuming training. '
'Does not apply to tfrecords dataloader, try resuming'
'with a different seed in this case.')
# distributed training args
group.add_argument('--distributed-backend', default='nccl',
help='which backend to use for distributed '
'training. One of [gloo, nccl]')
group.add_argument('--local_rank', type=int, default=None,
help='local rank passed from distributed launcher')
group.add_argument('--fp16', action='store_true',
help='Run model in fp16 mode')
group.add_argument('--epochs', type=int, default=None,
help='Number of finetunning epochs. Zero results in evaluation only.')
group.add_argument('--label-smoothing', type=float, default=0.0)
# Batch producer arguments
group.add_argument('--reset-position-ids', action='store_true',
help='Reset posistion ids after end-of-document token.')
group.add_argument('--reset-attention-mask', action='store_true',
help='Reset self attention maske after '
'end-of-document token.')
group.add_argument('--new-save-directory', action='store_true')
group.add_argument('--switch-linear', action='store_true', help="Switch to linear decay for cosine decay")
group.add_argument('--save-epoch', type=int, default=1,
help='number of epochs between saves')
group.add_argument('--no-save-rng', action='store_true',
help='Do not save current rng state.')
group.add_argument('--no-load-rng', action='store_true',
help='Do not load rng state when loading checkpoint.')
group.add_argument('--no-save-optim', action='store_true',
help='Do not save current optimizer.')
group.add_argument('--no-load-optim', action='store_true',
help='Do not load optimizer when loading checkpoint.')
group.add_argument('--no-load-lr-scheduler', action='store_true',
help='Do not load lr scheduler when loading checkpoint.')
group.add_argument('--no-load-iteration', action='store_true',
help='Do not start from the iteration in the checkpoint')
group.add_argument('--no-deepspeed-load', action='store_true', help='Not use deepspeed when loading checkpoint')
# FIXME: use args.mode
group.add_argument('--finetune', action='store_true',
help='Load model for finetuning. Do not load optimizer '
'or rng state from checkpoint and set iteration to 0. '
'Assumed when loading a release checkpoint.')
return parser
def add_evaluation_args(parser):
"""Evaluation arguments."""
group = parser.add_argument_group('validation', 'validation configurations')
group.add_argument('--eval-batch-size', type=int, default=None,
help='Data Loader batch size for evaluation datasets.'
'Defaults to `--batch-size`')
group.add_argument('--eval-iters', type=int, default=100,
help='number of iterations to run for evaluation'
'validation/test for')
group.add_argument('--eval-interval', type=int, default=1000,
help='interval between running evaluation on validation set')
group.add_argument('--eval-epoch', type=int, default=1,
help='epoch between running evaluation on validation set')
group.add_argument('--eval-seq-length', type=int, default=None,
help='Maximum sequence length to process for '
'evaluation. Defaults to `--seq-length`')
group.add_argument('--overlapping-eval', type=int, default=32)
return parser
def add_text_generate_args(parser):
"""Text generate arguments."""
group = parser.add_argument_group('Text generation', 'generation configurations')
group.add_argument("--temperature", type=float, default=1.0)
group.add_argument("--top_p", type=float, default=0.0)
group.add_argument("--top_k", type=int, default=0)
group.add_argument("--num-beams", type=int, default=1)
group.add_argument("--length-penalty", type=float, default=0.0)
group.add_argument("--no-repeat-ngram-size", type=int, default=0)
group.add_argument("--min-tgt-length", type=int, default=0)
group.add_argument("--out-seq-length", type=int, default=256)
group.add_argument('--input-source', type=str, default='interactive',
help='what input mode to use, interactive or path')
group.add_argument('--output-path', type=str, default='./samples',
help='path to place the generated samples')
group.add_argument('--with-id', action='store_true',
help='If each line is prepended with an id.')
group.add_argument('--max-inference-batch-size', type=int, default=12)
group.add_argument('--device', type=int, default=-1)
group.add_argument("--select-topk", action='store_true')
group.add_argument("--blank-maskratio", type=float, default=0.1)
return parser
def add_data_args(parser):
"""Train/valid/test data arguments."""
group = parser.add_argument_group('data', 'data configurations')
group.add_argument('--model-parallel-size', type=int, default=1,
help='size of the model parallel.')
group.add_argument('--train-data', nargs='+', default=None,
help='Whitespace separated filenames or corpora names '
'for training.')
group.add_argument('--valid-data', nargs='*', default=None,
help="""Filename for validation data.""")
group.add_argument('--test-data', nargs='*', default=None,
help="""Filename for testing""")
group.add_argument('--split', default='1000,1,1',
help='comma-separated list of proportions for training,'
' validation, and test split')
group.add_argument('--num-workers', type=int, default=2,
help="""Number of workers to use for dataloading""")
group.add_argument('--data-dir', type=str, default=None, help="The data path to all the data files")
group.add_argument('--no-lazy-loader', action='store_true',
help='whether to lazy read the data set')
group.add_argument('--loader-fraction', type=float, default=1.0)
group.add_argument('--loader-scatter', type=int, default=None, help='Number of scatters to use for dataloaders')
group.add_argument('--loose-json', action='store_true',
help='Use loose json (one json-formatted string per '
'newline), instead of tight json (data file is one '
'json string)')
group.add_argument('--presplit-sentences', action='store_true',
help='Dataset content consists of documents where '
'each document consists of newline separated sentences')
group.add_argument('--no-fix-command', action='store_true')
group.add_argument('--no-pre-tokenize', action='store_true')
group.add_argument("--cache-dir", default=None, type=str,
help="Where to store pre-trained BERT downloads")
group.add_argument('--seq-length', type=int, default=512,
help="Maximum sequence length to process")
group.add_argument('--mem-length', type=int, default=0,
help="The memory length to preserve")
group.add_argument('--non-sentence-start', type=float, default=0.0)
group.add_argument('--sample-one-document', action='store_true', help='only sample one document in one sample')
group.add_argument('--load-splits', type=str, default=None, help="The path to load split indices from")
group.add_argument('--save-splits', type=str, default=None, help="The path to save split indices to")
group.add_argument('--save-test-data', type=str, default=None, help="The path to save the test data")
group.add_argument('--multi-task-data', nargs='*', default=None,
help="Downsteam task names for multi-task pre-training")
group.add_argument('--multi-task-ratio', type=float, default=0.0, help="Ratio for multi-task pre-training")
group.add_argument('--multi-seq-length', type=int, default=None)
group.add_argument('--multi-batch-size', type=int, default=None)
group.add_argument('--shuffle', action='store_true',
help='Shuffle data. Shuffling is deterministic '
'based on seed and current epoch.')
group.add_argument('--filter-english', action='store_true')
group.add_argument('--dataset-temperature', type=float, default=1.0)
group.add_argument('--tokenizer-model-type', type=str,
default=None,
help="Model type to use for sentencepiece tokenization \
(one of ['bpe', 'char', 'unigram', 'word']) or \
bert vocab to use for BertWordPieceTokenizer (one of \
['bert-large-uncased', 'bert-large-cased', etc.])")
group.add_argument('--tokenizer-type', type=str,
default='BertWordPieceTokenizer',
choices=['CharacterLevelTokenizer',
'SentencePieceTokenizer',
'BertWordPieceTokenizer',
'GPT2BPETokenizer',
'ChineseSPTokenizer'],
help='what type of tokenizer to use')
return parser
def add_finetune_config_args(parser):
group = parser.add_argument_group('finetune', 'finetune configurations')
group.add_argument('--task', type=str, help='Task name.')
group.add_argument('--load-pretrained', type=str, help="Load pretrained model", default=None)
group.add_argument('--pool-token', type=str, choices=['start', 'pad', 'cls'],
help='The token to pool the sequence representation', default='cls')
group.add_argument('--cloze-eval', action='store_true', help='Evaluation dataset with cloze task')
group.add_argument('--multi-token', action='store_true', help='Use multi token for cloze evaluation')
group.add_argument('--segment-length', type=int, default=0, help="The maximum segment length for cloze evaluation")
group.add_argument('--loss-func', type=str, choices=["cross_entropy", "hinge", "generative", "mix"],
default="cross_entropy")
group.add_argument('--block-lm-ratio', type=float, default=0.0)
group.add_argument('--adapet', action='store_true', help="Use the decoupled cross entropy loss in AdaPET")
group.add_argument('--pattern-id', type=int, default=0)
group.add_argument('--fast-decode', action='store_true',
help="Fast decode for multi-token cloze. Can only be used without checkpoint activation.")
group.add_argument('--eval-valid', action='store_true', help="Whether evaluate on the valid set")
group.add_argument('--validation-metric', type=str, default=None)
group.add_argument('--unidirectional', action='store_true', help="Use the left to right language model")
group.add_argument('--src-seq-length', type=int, default=None)
group.add_argument('--tgt-seq-length', type=int, default=None)
group.add_argument('--adam-beta1', type=float, default=0.9)
group.add_argument('--adam-beta2', type=float, default=0.999)
group.add_argument('--adam-eps', type=float, default=1e-8)
group.add_argument('--optimizer', type=str, choices=['adam', 'adafactor'], default='adam')
group.add_argument('--wsc-negative', action='store_true')
group.add_argument('--overwrite', action='store_true')
group.add_argument('--no-validation', action='store_true')
group.add_argument('--lazy-seq2seq-loader', action='store_true')
# Continuous prompt arguments
group.add_argument('--continuous-prompt', action='store_true', help="Use continuous prompt for PET")
group.add_argument('--num-prompt-tokens', type=int, default=0)
group.add_argument('--prompt-func', default='none', choices=["lstm", "mlp", "none"])
group.add_argument('--freeze-transformer', action='store_true', default=False)
group.add_argument('--tune-prefix-layers', type=int, default=None)
group.add_argument('--prefix-prompt', type=int, default=0)
group.add_argument('--prompt-init', action='store_true', default=False)
return parser
def add_glm_args(parser):
"""Arguments for GLM"""
group = parser.add_argument_group('GLM', 'GLM Configurations')
group.add_argument('--block-lm', action='store_true', help="whether use the BlockLM pre-training")
group.add_argument('--masked-lm', action='store_true', help='whether to use the mlm objective')
group.add_argument('--bert-prob', type=float, default=0.5)
group.add_argument('--gpt-infill-prob', type=float, default=0.5)
group.add_argument('--gpt-min-ratio', type=float, default=0.5)
group.add_argument('--gap-sentence-prob', type=float, default=0.0)
group.add_argument('--gap-sentence-ratio', type=float, default=0.15)
group.add_argument('--avg-block-length', type=int, default=3)
group.add_argument('--short-seq-prob', type=float, default=0.0)
group.add_argument('--single-span-prob', type=float, default=0.0)
group.add_argument('--task-mask', action='store_true', help="Use different mask for generation and blank filling")
group.add_argument('--no-shuffle-block', action='store_true', help="not shuffle the blocks when filling the blank")
group.add_argument('--no-block-position', action='store_true',
help='Use (rough) absolute positions instead of block positions')
group.add_argument('--sentinel-token', action='store_true',
help="Use sentinel (mask) tokens to replace 2d position encoding")
group.add_argument('--block-mask-prob', type=float, default=0.0)
group.add_argument('--context-mask-ratio', type=float, default=0.0)
group.add_argument('--random-position', action='store_true',
help="Use random start position to cover all the position embeddings")
return parser
def get_args(arg_list=None):
"""Parse all the args."""
parser = argparse.ArgumentParser(description='GLM Model')
parser = add_model_config_args(parser)
parser = add_training_args(parser)
parser = add_evaluation_args(parser)
parser = add_text_generate_args(parser)
parser = add_data_args(parser)
parser = add_finetune_config_args(parser)
parser = add_glm_args(parser)
# Include DeepSpeed configuration arguments
parser = deepspeed.add_config_arguments(parser)
args = parser.parse_args(arg_list)
if not args.train_data and not args.data_dir:
print('WARNING: No training data specified')
args.tokenizer_type = "glm_" + args.tokenizer_type
args.cuda = torch.cuda.is_available()
args.rank = int(os.getenv('RANK', '0'))
args.world_size = int(os.getenv("WORLD_SIZE", '1'))
if hasattr(args, 'deepspeed_mpi') and args.deepspeed_mpi:
mpi_define_env(args)
elif os.getenv('OMPI_COMM_WORLD_LOCAL_RANK'):
# We are using (OpenMPI) mpirun for launching distributed data parallel processes
args.local_rank = int(os.getenv('OMPI_COMM_WORLD_LOCAL_RANK'))
args.rank = int(os.getenv('OMPI_COMM_WORLD_RANK'))
args.world_size = int(os.getenv('OMPI_COMM_WORLD_SIZE'))
print("**********************************", args.rank, args.world_size, args.local_rank)
if args.device == -1: # not set manually
args.device = args.rank % torch.cuda.device_count()
if args.local_rank is not None:
args.device = args.local_rank
args.model_parallel_size = min(args.model_parallel_size, args.world_size)
if args.rank == 0:
print('using world size: {} and model-parallel size: {} '.format(
args.world_size, args.model_parallel_size))
if hasattr(args, "deepspeed") and args.deepspeed and args.deepspeed_config is not None:
with open(args.deepspeed_config) as file:
deepspeed_config = json.load(file)
if "fp16" in deepspeed_config and deepspeed_config["fp16"]["enabled"]:
args.fp16 = True
else:
args.fp16 = False
if args.checkpoint_activations:
args.deepspeed_activation_checkpointing = True
else:
args.deepspeed_activation_checkpointing = False
if "train_micro_batch_size_per_gpu" in deepspeed_config:
args.batch_size = deepspeed_config["train_micro_batch_size_per_gpu"]
if "gradient_accumulation_steps" in deepspeed_config:
args.gradient_accumulation_steps = deepspeed_config["gradient_accumulation_steps"]
else:
args.gradient_accumulation_steps = 1
if "optimizer" in deepspeed_config:
optimizer_params_config = deepspeed_config["optimizer"].get("params", {})
args.lr = optimizer_params_config.get("lr", args.lr)
args.weight_decay = optimizer_params_config.get("weight_decay", args.weight_decay)
return args
def mpi_define_env(args):
from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
world_size = comm.Get_size()
master_addr = None
if rank == 0:
master_addr = get_hostname()
master_addr = comm.bcast(master_addr, root=0)
# Determine local rank by assuming hostnames are unique
proc_name = MPI.Get_processor_name()
all_procs = comm.allgather(proc_name)
local_rank = sum([i == proc_name for i in all_procs[:rank]])
os.environ['RANK'] = str(rank)
os.environ['WORLD_SIZE'] = str(world_size)
args.local_rank = local_rank
args.world_size = world_size
args.rank = rank
os.environ['MASTER_ADDR'] = master_addr
os.environ['MASTER_PORT'] = "29500" # TORCH_DISTRIBUTED_DEFAULT_PORT = 29500
print(
"Discovered MPI settings of world_rank={}, local_rank={}, world_size={}, master_addr={}, master_port={}"
.format(os.environ['RANK'],
args.local_rank,
os.environ['WORLD_SIZE'],
os.environ['MASTER_ADDR'],
os.environ['MASTER_PORT']))