-
Notifications
You must be signed in to change notification settings - Fork 326
/
learning_rates.py
92 lines (82 loc) · 3.71 KB
/
learning_rates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch DataLoader for TFRecords"""
import torch
from torch.optim.lr_scheduler import _LRScheduler
import math
class AnnealingLR(_LRScheduler):
"""Anneals the learning rate from start to zero along a cosine curve."""
DECAY_STYLES = ['linear', 'cosine', 'exponential', 'constant', 'None']
def __init__(self, optimizer, start_lr, warmup_iter, num_iters, decay_style=None, last_iter=-1, decay_ratio=0.5):
assert warmup_iter <= num_iters
self.optimizer = optimizer
self.start_lr = start_lr
self.warmup_iter = warmup_iter
self.num_iters = last_iter + 1
self.end_iter = num_iters
self.decay_style = decay_style.lower() if isinstance(decay_style, str) else None
self.decay_ratio = 1 / decay_ratio
self.step(self.num_iters)
if not torch.distributed.is_initialized() or torch.distributed.get_rank() == 0:
print(f'learning rate decaying style {self.decay_style}, ratio {self.decay_ratio}')
def get_lr(self):
# https://openreview.net/pdf?id=BJYwwY9ll pg. 4
if self.warmup_iter > 0 and self.num_iters <= self.warmup_iter:
return float(self.start_lr) * self.num_iters / self.warmup_iter
else:
if self.decay_style == self.DECAY_STYLES[0]:
decay_step_ratio = (self.num_iters - self.warmup_iter) / self.end_iter
return self.start_lr - self.start_lr * (1 - 1 / self.decay_ratio) * decay_step_ratio
elif self.decay_style == self.DECAY_STYLES[1]:
decay_step_ratio = min(1.0, (self.num_iters - self.warmup_iter) / self.end_iter)
return self.start_lr / self.decay_ratio * (
(math.cos(math.pi * decay_step_ratio) + 1) * (self.decay_ratio - 1) / 2 + 1)
elif self.decay_style == self.DECAY_STYLES[2]:
# TODO: implement exponential decay
return self.start_lr
else:
return self.start_lr
def step(self, step_num=None):
if step_num is None:
step_num = self.num_iters + 1
self.num_iters = step_num
new_lr = self.get_lr()
for group in self.optimizer.param_groups:
group['lr'] = new_lr
def state_dict(self):
sd = {
# 'start_lr': self.start_lr,
'warmup_iter': self.warmup_iter,
'num_iters': self.num_iters,
'decay_style': self.decay_style,
'end_iter': self.end_iter,
'decay_ratio': self.decay_ratio
}
return sd
def load_state_dict(self, sd):
# self.start_lr = sd['start_lr']
self.warmup_iter = sd['warmup_iter']
self.num_iters = sd['num_iters']
# self.end_iter = sd['end_iter']
# self.decay_style = sd['decay_style']
# if 'decay_ratio' in sd:
# self.decay_ratio = sd['decay_ratio']
self.step(self.num_iters)
def switch_linear(self, args):
current_lr = self.get_lr()
self.start_lr = current_lr
self.end_iter = args.train_iters - self.num_iters
self.num_iters = 0
self.decay_style = "linear"