-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain.py
66 lines (57 loc) · 2.06 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from lib.visualize import visualizeEncoderDecoder
from lib.model import GANomaly2D
from parse.parse import parse_args
import torchvision_sunner.transforms as sunnerTransforms
import torchvision_sunner.data as sunnerData
import torchvision.transforms as transforms
from tqdm import tqdm
import argparse
import torch
import os
"""
This script defines the training procedure of GANomaly2D
Author: SunnerLi
"""
def train(args):
"""
This function define the training process
Arg: args (napmespace) - The arguments
"""
# Create the data loader
loader = sunnerData.DataLoader(
dataset = sunnerData.ImageDataset(
root = [[args.train]],
transforms = transforms.Compose([
sunnerTransforms.Resize(output_size = (args.H, args.W)),
sunnerTransforms.ToTensor(),
sunnerTransforms.ToFloat(),
# sunnerTransforms.Transpose(),
sunnerTransforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
), batch_size = args.batch_size, shuffle = True, num_workers = 2
)
loader = sunnerData.IterationLoader(loader, max_iter = args.n_iter)
# Create the model
model = GANomaly2D(r = args.r, device = args.device)
model.IO(args.resume, direction = 'load')
model.train()
# Train!
bar = tqdm(loader)
for i, (normal_img,) in enumerate(bar):
model.forward(normal_img)
model.backward()
loss_G, loss_D = model.getLoss()
bar.set_description("Loss_G: " + str(loss_G) + " loss_D: " + str(loss_D))
bar.refresh()
if i % args.record_iter == 0:
model.eval()
with torch.no_grad():
z, z_ = model.forward(normal_img)
img, img_ = model.getImg()
visualizeEncoderDecoder(img, img_, z, z_)
model.train()
model.IO(args.det, direction = 'save')
model.IO(args.det, direction = 'save')
if __name__ == '__main__':
args = parse_args(phase = 'train')
train(args)