-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathdemo.py
56 lines (47 loc) · 1.6 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from parse.parse import parse_args
from lib.visualize import visualizeAnomalyImage, visualizeEncoderDecoder
from lib.model import GANomaly2D
import torchvision_sunner.transforms as sunnerTransforms
import torchvision_sunner.data as sunnerData
import torchvision.transforms as transforms
from tqdm import tqdm
import argparse
import torch
import cv2
import os
"""
This script defines the demo procedure of GANomaly2D
Author: SunnerLi
"""
def demo(args):
"""
This function define the demo process
Arg: args (napmespace) - The arguments
"""
# Create the data loader
loader = sunnerData.DataLoader(
dataset = sunnerData.ImageDataset(
root = [[args.demo]],
transforms = transforms.Compose([
sunnerTransforms.Resize(output_size = (args.H, args.W)),
sunnerTransforms.ToTensor(),
sunnerTransforms.ToFloat(),
# sunnerTransforms.Transpose(),
sunnerTransforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
), batch_size = args.batch_size, shuffle = True, num_workers = 2
)
# Create the model
model = GANomaly2D(r = args.r, device = args.device)
model.IO(args.resume, direction = 'load')
# Demo!
bar = tqdm(loader)
model.eval()
with torch.no_grad():
for (img,) in bar:
z, z_ = model.forward(img)
img, img_ = model.getImg()
visualizeAnomalyImage(img, img_, z, z_)
if __name__ == '__main__':
args = parse_args(phase = 'demo')
demo(args)