-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn_backprop.py
100 lines (77 loc) · 3.12 KB
/
nn_backprop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import numpy as np
def sigmoid(x):
return 1.0/(1.0 + np.exp(-x))
def sigmoid_prime(x):
return sigmoid(x)*(1.0-sigmoid(x))
def tanh(x):
return np.tanh(x)
def tanh_prime(x):
return 1.0 - x**2
class NeuralNetwork:
def __init__(self, layers, activation='tanh'):
if activation == 'sigmoid':
self.activation = sigmoid
self.activation_prime = sigmoid_prime
elif activation == 'tanh':
self.activation = tanh
self.activation_prime = tanh_prime
# Set weights
self.weights = []
# layers = [2,2,1]
# range of weight values (-1,1)
# input and hidden layers - random((2+1, 2+1)) : 3 x 3
for i in range(1, len(layers) - 1):
r = 2*np.random.random((layers[i-1] + 1, layers[i] + 1)) -1
self.weights.append(r)
# output layer - random((2+1, 1)) : 3 x 1
r = 2*np.random.random( (layers[i] + 1, layers[i+1])) - 1
self.weights.append(r)
def fit(self, X, y, learning_rate=0.2, epochs=1000):
# Add column of ones to X
# This is to add the bias unit to the input layer
ones = np.atleast_2d(np.ones(X.shape[0]))
X = np.concatenate((ones.T, X), axis=1)
for k in range(epochs):
i = np.random.randint(X.shape[0])
a = [X[i]]
for l in range(len(self.weights)):
dot_value = np.dot(a[l], self.weights[l])
activation = self.activation(dot_value)
a.append(activation)
# output layer
error = y[i] - a[-1]
deltas = [error * self.activation_prime(a[-1])]
# we need to begin at the second to last layer
# (a layer before the output layer)
for l in range(len(a) - 2, 0, -1):
deltas.append(deltas[-1].dot(self.weights[l].T)*self.activation_prime(a[l]))
# reverse
# [level3(output)->level2(hidden)] => [level2(hidden)->level3(output)]
deltas.reverse()
# backpropagation
# 1. Multiply its output delta and input activation
# to get the gradient of the weight.
# 2. Subtract a ratio (percentage) of the gradient from the weight.
for i in range(len(self.weights)):
layer = np.atleast_2d(a[i])
delta = np.atleast_2d(deltas[i])
self.weights[i] += learning_rate * layer.T.dot(delta)
if k % 10000 == 0: print ('epochs:', k)
def predict(self, x):
print(x)
a = np.concatenate((np.ones(1).T, np.array(x)))
for l in range(0, len(self.weights)):
a = self.activation(np.dot(a, self.weights[l]))
return a
def feedforward(self, a):
"""Return the output of the network if ``a`` is input."""
for b, w in zip(self.biases, self.weights):
a = sigmoid(np.dot(w, a)+b)
return a
if __name__ == '__main__':
nn = NeuralNetwork([2,2,1])
X = np.array([[0, 0]])
y = np.array([0])
nn.fit(X, y)
for e in X:
print(e,nn.predict(e))