-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathconfig.py
70 lines (64 loc) · 1.94 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import os.path as osp
from cvpods.configs.fcos_config import FCOSConfig
_config_dict = dict(
MODEL=dict(
WEIGHTS="detectron2://ImageNetPretrained/MSRA/R-50.pkl",
RESNETS=dict(DEPTH=50),
FCOS=dict(
NUM_CONVS=8,
CENTERNESS_ON_REG=True,
NORM_REG_TARGETS=True,
NMS_THRESH_TEST=0.6,
BBOX_REG_WEIGHTS=(1.0, 1.0, 1.0, 1.0),
FOCAL_LOSS_GAMMA=2.0,
FOCAL_LOSS_ALPHA=0.25,
IOU_LOSS_TYPE="giou",
CENTER_SAMPLING_RADIUS=1.5,
OBJECT_SIZES_OF_INTEREST=[
[-1, 64],
[64, 128],
[128, 256],
[256, 512],
[512, float("inf")],
],
NORM_SYNC=True,
NUM_GROUPS=1,
GATE_ACTIVATION="GeReTanH",
GATE_ACTIVATION_KARGS=dict(tau=1.5),
RESIZE_METHOD="bilinear",
BUDGET_LOSS_LAMBDA=0.1,
),
),
DATASETS=dict(
TRAIN=("coco_2017_train",),
TEST=("coco_2017_val",),
),
SOLVER=dict(
IMS_PER_BATCH=16,
BASE_LR=0.01,
STEPS=(60000, 80000),
MAX_ITER=90000,
),
INPUT=dict(
AUG=dict(
TRAIN_PIPELINES=[
("ResizeShortestEdge",
dict(short_edge_length=(800,), max_size=1333, sample_style="choice")),
("RandomFlip", dict()),
],
TEST_PIPELINES=[
("ResizeShortestEdge",
dict(short_edge_length=800, max_size=1333, sample_style="choice")),
],
)
),
OUTPUT_DIR=osp.join(
'/data/Outputs/model_logs/cvpods_playground',
osp.split(osp.realpath(__file__))[0].split("playground/")[-1]
),
)
class CustomFCOSConfig(FCOSConfig):
def __init__(self):
super(CustomFCOSConfig, self).__init__()
self._register_configuration(_config_dict)
config = CustomFCOSConfig()