-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
train_mosaic.py
176 lines (140 loc) · 7.27 KB
/
train_mosaic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import numpy as np
import tensorflow as tf
from PIL import Image, ImageFilter
import tqdm
from model_mosaic import Model
import load
IMAGE_SIZE = 128
LOCAL_SIZE = 64
HOLE_MIN = 24
HOLE_MAX = 48
MOSAIC_MIN = 8 #Minimum number of mosaic squares across image
MOSAIC_MAX = 32 #Maximum number of mosaic squares across image
MOSAIC_GAUSSIAN_P = 0.5 #represent images that have been compressed post-mosaic
MOSAIC_GAUSSIAN_MIN = 0.2
MOSAIC_GAUSSIAN_MAX = 1.2
LEARNING_RATE = 1e-3
BATCH_SIZE = 16
PRETRAIN_EPOCH = 100
def train():
x = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3])
mosaic = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3])
mask = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 1])
local_x = tf.placeholder(tf.float32, [BATCH_SIZE, LOCAL_SIZE, LOCAL_SIZE, 3])
global_completion = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3])
local_completion = tf.placeholder(tf.float32, [BATCH_SIZE, LOCAL_SIZE, LOCAL_SIZE, 3])
is_training = tf.placeholder(tf.bool, [])
model = Model(x, mosaic, mask, local_x, global_completion, local_completion, is_training, batch_size=BATCH_SIZE)
sess = tf.Session()
global_step = tf.Variable(0, name='global_step', trainable=False)
epoch = tf.Variable(0, name='epoch', trainable=False)
opt = tf.train.AdamOptimizer(learning_rate=LEARNING_RATE)
g_train_op = opt.minimize(model.g_loss, global_step=global_step, var_list=model.g_variables)
d_train_op = opt.minimize(model.d_loss, global_step=global_step, var_list=model.d_variables)
init_op = tf.global_variables_initializer()
sess.run(init_op)
if tf.train.get_checkpoint_state('./models'):
saver = tf.train.Saver()
saver.restore(sess, './models/latest')
x_train, x_test = load.load()
x_train = np.array([a / 127.5 - 1 for a in x_train])
x_test = np.array([a / 127.5 - 1 for a in x_test])
step_num = int(len(x_train) / BATCH_SIZE)
while True:
sess.run(tf.assign(epoch, tf.add(epoch, 1)))
print('epoch: {}'.format(sess.run(epoch)))
np.random.shuffle(x_train)
# Completion
if sess.run(epoch) <= PRETRAIN_EPOCH:
g_loss_value = 0
for i in tqdm.tqdm(range(step_num)):
x_batch = x_train[i * BATCH_SIZE:(i + 1) * BATCH_SIZE]
points_batch, mask_batch = get_points()
mosaic_batch = get_mosaic(x_batch)
_, g_loss = sess.run([g_train_op, model.g_loss], feed_dict={x: x_batch, mask: mask_batch, mosaic: mosaic_batch, is_training: True})
g_loss_value += g_loss
print('Completion loss: {}'.format(g_loss_value))
f = open("loss.csv","a+")
f.write(str(sess.run(epoch)) + "," + str(g_loss_value) + "," + "0" + "\n")
f.close()
np.random.shuffle(x_test)
x_batch = x_test[:BATCH_SIZE]
mosaic_batch = get_mosaic(x_batch)
merged, completion = sess.run([model.merged, model.completion], feed_dict={x: x_batch, mask: mask_batch, mosaic: mosaic_batch, is_training: False})
sample = np.array((merged[0] + 1) * 127.5, dtype=np.uint8)
result = Image.fromarray(sample)
result.save('./training_output_images/{}_0.png'.format("{0:06d}".format(sess.run(epoch))))
sample = np.array((completion[0] + 1) * 127.5, dtype=np.uint8)
result = Image.fromarray(sample)
result.save('./training_output_images/{}_1.png'.format("{0:06d}".format(sess.run(epoch))))
saver = tf.train.Saver()
saver.save(sess, './models/latest', write_meta_graph=False)
if sess.run(epoch) == PRETRAIN_EPOCH:
saver.save(sess, './models/pretrained', write_meta_graph=False)
# Discrimitation
else:
g_loss_value = 0
d_loss_value = 0
for i in tqdm.tqdm(range(step_num)):
x_batch = x_train[i * BATCH_SIZE:(i + 1) * BATCH_SIZE]
points_batch, mask_batch = get_points()
mosaic_batch = get_mosaic(x_batch)
_, g_loss, completion = sess.run([g_train_op, model.g_loss, model.completion], feed_dict={x: x_batch, mask: mask_batch, mosaic: mosaic_batch, is_training: True})
g_loss_value += g_loss
local_x_batch = []
local_completion_batch = []
for i in range(BATCH_SIZE):
x1, y1, x2, y2 = points_batch[i]
local_x_batch.append(x_batch[i][y1:y2, x1:x2, :])
local_completion_batch.append(completion[i][y1:y2, x1:x2, :])
local_x_batch = np.array(local_x_batch)
local_completion_batch = np.array(local_completion_batch)
_, d_loss = sess.run(
[d_train_op, model.d_loss],
feed_dict={x: x_batch, mask: mask_batch, local_x: local_x_batch, global_completion: completion, local_completion: local_completion_batch, is_training: True})
d_loss_value += d_loss
print('Completion loss: {}'.format(g_loss_value))
print('Discriminator loss: {}'.format(d_loss_value))
np.random.shuffle(x_test)
x_batch = x_test[:BATCH_SIZE]
mosaic_batch = get_mosaic(x_batch)
merged, completion = sess.run([model.merged, model.completion], feed_dict={x: x_batch, mask: mask_batch, mosaic: mosaic_batch, is_training: False})
sample = np.array((merged[0] + 1) * 127.5, dtype=np.uint8)
result = Image.fromarray(sample)
result.save('./training_output_images/{}_0.png'.format("{0:06d}".format(sess.run(epoch))))
sample = np.array((completion[0] + 1) * 127.5, dtype=np.uint8)
result = Image.fromarray(sample)
result.save('./training_output_images/{}_1.png'.format("{0:06d}".format(sess.run(epoch))))
saver = tf.train.Saver()
saver.save(sess, './models/latest', write_meta_graph=False)
def get_points():
points = []
mask = []
for i in range(BATCH_SIZE):
x1, y1 = np.random.randint(0, IMAGE_SIZE - LOCAL_SIZE + 1, 2)
x2, y2 = np.array([x1, y1]) + LOCAL_SIZE
points.append([x1, y1, x2, y2])
w, h = np.random.randint(HOLE_MIN, HOLE_MAX + 1, 2)
p1 = x1 + np.random.randint(0, LOCAL_SIZE - w)
q1 = y1 + np.random.randint(0, LOCAL_SIZE - h)
p2 = p1 + w
q2 = q1 + h
m = np.zeros((IMAGE_SIZE, IMAGE_SIZE, 1), dtype=np.uint8)
m[q1:q2 + 1, p1:p2 + 1] = 1
mask.append(m)
return np.array(points), np.array(mask)
def get_mosaic(x_batch):
mosaic = []
for i in range(BATCH_SIZE):
im = np.array((x_batch[i] + 1) * 127.5, dtype=np.uint8)
im = Image.fromarray(im)
size = np.random.randint(MOSAIC_MIN, MOSAIC_MAX)
im = im.resize((size,size),Image.LANCZOS)
im = im.resize((IMAGE_SIZE,IMAGE_SIZE),Image.NEAREST)
if np.random.rand() < MOSAIC_GAUSSIAN_P:
im = im.filter(ImageFilter.GaussianBlur(np.random.uniform(MOSAIC_GAUSSIAN_MIN, MOSAIC_GAUSSIAN_MAX)))
mosaic.append(np.array(im))
mosaic = np.array([a / 127.5 - 1 for a in mosaic])
return mosaic
if __name__ == '__main__':
train()