-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1D_to_3D_projection.py
executable file
·583 lines (519 loc) · 20.5 KB
/
1D_to_3D_projection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
#!/usr/bin/env python
import pdb
import sys
import os
import vtk
import numpy as np
import time
import glob
import math
import argparse
from collections import defaultdict
from tqdm import tqdm
import pickle
import math
from get_database import input_args, Database, Post, SimVascular
# Read a vtp file and return the polydata
def read_polydata(filename, datatype=None):
"""
Load the given file, and return a vtkPolyData object for it.
Args:
filename (str): Path to input file.
datatype (str): Additional parameter for vtkIdList objects.
Returns:
polyData (vtkSTL/vtkPolyData/vtkXMLStructured/
vtkXMLRectilinear/vtkXMLPolydata/vtkXMLUnstructured/
vtkXMLImage/Tecplot): Output data.
"""
# Check if file exists
if not os.path.exists(filename):
raise RuntimeError("Could not find file: %s" % filename)
# Check filename format
fileType = filename.split(".")[-1]
if fileType == '':
raise RuntimeError('The file does not have an extension')
# Get reader
if fileType == 'stl':
reader = vtk.vtkSTLReader()
reader.MergingOn()
elif fileType == 'vtk':
reader = vtk.vtkPolyDataReader()
elif fileType == 'vtp':
reader = vtk.vtkXMLPolyDataReader()
elif fileType == 'vts':
reader = vtk.vtkXMinkorporereLStructuredGridReader()
elif fileType == 'vtr':
reader = vtk.vtkXMLRectilinearGridReader()
elif fileType == 'vtu':
reader = vtk.vtkXMLUnstructuredGridReader()
elif fileType == "vti":
reader = vtk.vtkXMLImageDataReader()
elif fileType == "np" and datatype == "vtkIdList":
result = np.load(filename).astype(np.int)
id_list = vtk.vtkIdList()
id_list.SetNumberOfIds(result.shape[0])
for i in range(result.shape[0]):
id_list.SetId(i, result[i])
return id_list
else:
raise RuntimeError('Unknown file type %s' % fileType)
# Read
reader.SetFileName(filename)
reader.Update()
polydata = reader.GetOutput()
return polydata
def cut_plane(inp, origin, normal):
"""
Cuts geometry at a plane
Args:
inp: InputConnection
origin: cutting plane origin
normal: cutting plane normal
Returns:
cut: cutter object
"""
# define cutting plane
plane = vtk.vtkPlane()
plane.SetOrigin(origin[0], origin[1], origin[2])
plane.SetNormal(normal[0], normal[1], normal[2])
# define cutter
cut = vtk.vtkCutter()
cut.SetInputData(inp)
cut.SetCutFunction(plane)
cut.Update()
return cut
def write_polydata(input_data, filename, datatype=None):
"""
Write the given input data based on the file name extension.
Args:
input_data (vtkSTL/vtkPolyData/vtkXMLStructured/
vtkXMLRectilinear/vtkXMLPolydata/vtkXMLUnstructured/
vtkXMLImage/Tecplot): Input data.
filename (str): Save path location.
datatype (str): Additional parameter for vtkIdList objects.
"""
# Check filename format
fileType = filename.split(".")[-1]
if fileType == '':
raise RuntimeError('The file does not have an extension')
# Get writer
if fileType == 'stl':
writer = vtk.vtkSTLWriter()
elif fileType == 'vtk':
writer = vtk.vtkPolyDataWriter()
elif fileType == 'vts':
writer = vtk.vtkXMLStructuredGridWriter()
elif fileType == 'vtr':
writer = vtk.vtkXMLRectilinearGridWriter()
elif fileType == 'vtp':
writer = vtk.vtkXMLPolyDataWriter()
elif fileType == 'vtu':
writer = vtk.vtkXMLUnstructuredGridWriter()
elif fileType == "vti":
writer = vtk.vtkXMLImageDataWriter()
elif fileType == "np" and datatype == "vtkIdList":
output_data = np.zeros(input_data.GetNumberOfIds())
for i in range(input_data.GetNumberOfIds()):
output_data[i] = input_data.GetId(i)
output_data.dump(filename)
return
else:
raise RuntimeError('Unknown file type %s' % fileType)
# Set filename and input
writer.SetFileName(filename)
writer.SetInputData(input_data)
writer.Update()
# Write
writer.Write()
def calcDistance2Points(model, pt1,pt2):
if(type(pt1) is int or type(pt1) is int):
x1,y1,z1 = model.GetPoint(pt1)
elif(type(pt1) is list):
x1,y1,z1 = pt1[0],pt1[1],pt1[2]
else:
vprint(type(pt1))
if(type(pt2) is int or type(pt2) is int):
x2,y2,z2 = model.GetPoint(pt2)
else:
x2,y2,z2 = pt2[0],pt2[1],pt2[2]
distance = ((x1-x2)**2 + (y1-y2)**2 + (z1-z2)**2)**(.5)
return distance
class Graph:
def __init__(self):
self.nodes = set()
self.edges = defaultdict(list)
self.node_coord = dict()
self.node_properties = dict()
self.distances = {}
def add_node(self, value):
self.nodes.add(value)
def add_node_coord(self, node, coord):
self.node_coord[node] = coord
def add_node_property(self,node,value):
self.node_properties[node] = value
def add_edge(self, from_node, to_node, distance):
self.edges[from_node].append(to_node)
self.edges[to_node].append(from_node)
self.distances[(from_node, to_node)] = distance
self.distances[(to_node, from_node)] = distance
#adds a virtual node that collapses a group of nodes to one virtual node to make a source and sets distance to 0
def add_virtual_node(self, v_node, zero_edge_nodes):
self.nodes.add(v_node)
self.node_coord[v_node] = [0,0,0]
for i in zero_edge_nodes:
self.edges[v_node].append(i)
self.edges[i].append(v_node)
self.distances[(v_node, i)] = 0
self.distances[(i, v_node)] = 0
#distance cutoff is a value that ensures RCA centerlines don't wrap onto the LV myocardium through the right ventricle
def add_virtual_node_distances(self, v_node, edge_nodes, distances):
self.nodes.add(v_node)
self.node_coord[v_node] = [0,0,0]
DISTANCE_CUTOFF = 1
for i in edge_nodes:
if(distances[i]<DISTANCE_CUTOFF):
self.edges[v_node].append(i)
self.edges[i].append(v_node)
self.distances[(v_node, i)] = distances[i]
self.distances[(i, v_node)] = distances[i]
def get_node_coord(self,node):
return self.node_coord[node]
def get_num_of_nodes(self):
return len(self.nodes)
#generates a graph of the mesh
def generateGraph(mesh):
print('Generating graph...')
graph = Graph()
print(mesh.GetNumberOfPoints())
for i in tqdm(range(0,mesh.GetNumberOfPoints())):
graph.add_node(i)
graph.add_node_coord(i,mesh.GetPoint(i))
connnectedPt_list = getConnectedVerticesNotIncludingSeed(mesh,i)
for j in range(0,connnectedPt_list.GetNumberOfIds()):
# new point to decide whether to add to patch, edge, or nothing (if already in edge)
cpt = connnectedPt_list.GetId(j)
graph.add_edge(i,cpt,calcDistance2Points(mesh,i,cpt))
return graph
def getConnectedVerticesNotIncludingSeed(model, seedPt):
cell_list = vtk.vtkIdList()
connectedPts_list = vtk.vtkIdList()
model.GetPointCells(seedPt,cell_list)
for j in range(0,cell_list.GetNumberOfIds()):
pt_list = vtk.vtkIdList()
pt_list = model.GetCell(cell_list.GetId(j)).GetPointIds()
for k in range(0,pt_list.GetNumberOfIds()):
if (pt_list.GetId(k) != seedPt):
connectedPts_list.InsertUniqueId(pt_list.GetId(k))
return connectedPts_list
def dijsktra(graph, initial):
visited = {}
visited[initial] = 0
path = {}
path_nodes = set()
nodes = set(graph.nodes)
counter = 0
pbar = tqdm(total=len(nodes))
while nodes:
pbar.update(1)
min_node = None
for node in nodes:
if node in visited:
if min_node is None:
min_node = node
elif visited[node] <= visited[min_node]:
min_node = node
if min_node is None:
break
nodes.remove(min_node)
current_weight = visited[min_node]
for edge in graph.edges[min_node]:
weight = current_weight + graph.distances[(min_node, edge)]
if edge not in visited or weight <= visited[edge]:
visited[edge] = weight
path[edge] = min_node
path_nodes.add(edge)
counter += 1
pbar.close()
return visited, path
def dijsktra_destination(graph, initial, destinations):
visited = {}
visited[initial] = 0
path = {}
path_nodes = set()
nodes = set(graph.nodes)
counter = 0
pbar = tqdm(total=len(nodes))
while nodes:
pbar.update(1)
min_node = None
for node in nodes:
if node in visited:
if min_node is None:
min_node = node
elif visited[node] <= visited[min_node]:
min_node = node
if min_node is None:
break
nodes.remove(min_node)
current_weight = visited[min_node]
for edge in graph.edges[min_node]:
weight = current_weight + graph.distances[(min_node, edge)]
if edge not in visited or weight <= visited[edge]:
visited[edge] = weight
path[edge] = min_node
path_nodes.add(edge)
counter += 1
if min_node in destinations:
break
pbar.close()
return visited, path, min_node
def dijsktra_expand_properties(graph, initial, properties):
visited = {}
visited[initial] = 0
path = {}
path_nodes = set()
nodes = set(graph.nodes)
counter = 0
pbar = tqdm(total=len(nodes))
while nodes:
pbar.update(1)
min_node = None
for node in nodes:
if node in visited:
if min_node is None:
min_node = node
elif visited[node] <= visited[min_node]:
min_node = node
if min_node is None:
break
nodes.remove(min_node)
current_weight = visited[min_node]
for edge in graph.edges[min_node]:
if min_node in properties:
prop_dict = properties[min_node]
diff = [0,0,0]
vtk.vtkMath.Subtract(graph.get_node_coord(edge), graph.get_node_coord(min_node), diff)
#multiplier = vtk.vtkMath.Dot(prop_dict['Tangent'],diff)
#print('multiplier set to '+str(multiplier))
multiplier = 1
#print('multiplier set to 1')
weight = current_weight + graph.distances[(min_node, edge)]*abs(multiplier)
if edge not in visited or weight <= visited[edge]:
visited[edge] = weight
path[edge] = min_node
path_nodes.add(edge)
if min_node in properties:
properties[edge] = properties[min_node]
graph.add_node_property(edge,properties[min_node])
graph.add_node_property(min_node,properties[min_node])
counter += 1
pbar.close()
return visited, path
def multipleSourceDistance(mesh,graph,v_node,child_nodes,distances,properties):
graph.add_virtual_node(v_node,child_nodes)
f = open("properties.pkl","wb")
pickle.dump(properties,f)
f.close()
visited,path = dijsktra_expand_properties(graph,v_node,properties)
data_array = vtk.vtkDoubleArray()
data_array.SetName('distance_map')
for i in range(0,mesh.GetNumberOfPoints()):
if i in visited:
data_array.InsertNextValue(visited[i])
else:
data_array.InsertNextValue(-1)
mesh.GetPointData().AddArray(data_array)
return mesh
#returns node ids and total distance of the shortest path between two points
def shortest_path(graph, origin, destination):
visited, paths = dijkstra(graph, origin)
full_path = deque()
_destination = paths[destination]
while _destination != origin:
full_path.appendleft(_destination)
_destination = paths[_destination]
full_path.appendleft(origin)
full_path.append(destination)
return visited[destination], list(full_path)
# fast marching method that optimizes calculation of distances using a vtk mesh
def fastMarching(heart_graph,heart,seedPts):
pt_set= set()
numPts = heart.GetNumberOfPoints()
for ptID in seedPts:
pt_set.add(heart.FindPoint(ptID))
#intialize edge list
edgePt = set()
temp_list = vtk.vtkIdList()
pt_dist = {}
for pt in pt_set:
connnectedPt_list = getConnectedVerticesNotIncludingSeed(heart,pt)
for j in range(0,connnectedPt_list.GetNumberOfIds()):
# new point to decide whether to add to patch, edge, or nothing (if already in edge)
cpt = connnectedPt_list.GetId(j)
pt_dist[cpt] = calcDistance2Points(heart,pt,cpt)
temp_list.InsertNextId(cpt)
for i in range(0,temp_list.GetNumberOfIds()):
edgePt.add(temp_list.GetId(i))
pt_set.add(temp_list.GetId(i))
temp_list = vtk.vtkIdList()
#search until all points are found
while(len(edgePt) > 0):
temp = set()
for i in edgePt:
connnectedPt_list = getConnectedVerticesNotIncludingSeed(heart,i)
for j in range(0,connnectedPt_list.GetNumberOfIds()):
# new point to decide whether to add to patch, edge, or nothing (if already in edge)
cpt = connnectedPt_list.GetId(j)
if(cpt in pt_set and cpt in pt_dist):
pt_set.add(i)
pt_dist[i] = pt_dist[cpt] + calcDistance2Points(heart,i,cpt)
heart_graph.add_edge(i,cpt,calcDistance2Points(heart,i,cpt))
elif(connnectedPt_list.GetId(j) not in pt_set and cpt not in edgePt):
temp.add(cpt)
edgePt = temp
data_array = np.zeros(numPts)
for i in pt_dist:
data_array[i] = pt_dist[i]
vtk_array = vtk.vtkDoubleArray()
for i in data_array:
vtk_array.InsertNextValue(i)
vtk_array.SetName('Point Distances')
heart.GetPointData().AddArray(vtk_array)
return pt_dist
def addPropertiesFromDict(mesh,dict):
for p in range(0,mesh.GetNumberOfPoints()):
node = mesh.GetPointData().GetArray('GlobalNodeID').GetValue(p)
if node >= 0 and node < mesh.GetNumberOfPoints() and node in dict:
property_dict = dict[node]
for array_name in property_dict:
if not mesh.GetPointData().HasArray(array_name):
data = vtk.vtkDoubleArray()
data.SetName(array_name)
if(type(property_dict[array_name]) is float or type(property_dict[array_name]) is int):
data.SetNumberOfComponents(1)
else:
data.SetNumberOfComponents(len(property_dict[array_name]))
data.SetNumberOfValues(mesh.GetNumberOfPoints() * len(property_dict[array_name]))
data.Fill(-1)
mesh.GetPointData().AddArray(data)
print(array_name + ' data array added to mesh.')
print(data.GetNumberOfTuples())
if(type(property_dict[array_name]) is float or type(property_dict[array_name]) is int):
mesh.GetPointData().GetArray(array_name).SetValue(p,property_dict[array_name])
else:
mesh.GetPointData().GetArray(array_name).SetTuple(p,property_dict[array_name])
return mesh
def createParser():
parser = argparse.ArgumentParser(description='Maps diameter from given centerline to the surface of a given 3D model.')
parser.add_argument('centerline', type=str, help='the centerline to map diameters from')
parser.add_argument('mesh', type=str, help='the mesh to map onto')
parser.add_argument('out', type=str, help='output mesh')
parser.add_argument('-f','-file', type=str, nargs='?', default = None, help='the pickle filename with data')
parser.add_argument('-v', '-verbose', type=int, nargs='?', const=1, default=0, help='turn on verbosity')
return parser
def run(args):
mesh = read_polydata(args.mesh)
centerline = read_polydata(args.centerline)
cleaner = vtk.vtkCleanPolyData()
cleaner.SetInputData(centerline)
cleaner.PointMergingOn()
cleaner.Update()
centerline = cleaner.GetOutput()
global vprint
if args.v:
def vprint(*args):
# Print each argument separately so caller doesn't need to
# stuff everything to be printed into a single string
for arg in args:
print(arg),
else:
vprint = lambda *a: None
if(args.f==None):
numPts = mesh.GetNumberOfPoints()
data = [0]*numPts
seed_pts = set()
properties = {}
distances = {}
seed_pts_array = vtk.vtkDoubleArray()
seed_pts_array.SetName('seed_pts_array')
seed_pts_array.SetNumberOfValues(mesh.GetNumberOfPoints())
seed_pts_array.Fill(-1)
for j in range(0,centerline.GetPointData().GetNumberOfArrays()):
data = vtk.vtkDoubleArray()
data.SetName(centerline.GetPointData().GetArray(j).GetName())
data.SetNumberOfValues(mesh.GetNumberOfPoints())
data.Fill(-1)
mesh.GetPointData().AddArray(data)
#Add centerline points as seed points
print('Adding centerline seed pts')
for i in tqdm(range(0,centerline.GetNumberOfPoints())):
pt = mesh.FindPoint(centerline.GetPoint(i))
seed_pts.add(pt)
seed_pts_array.SetValue(pt,i)
property_dict = dict()
for j in range(0,centerline.GetPointData().GetNumberOfArrays()):
property_dict[str(centerline.GetPointData().GetArray(j).GetName())] = centerline.GetPointData().GetArray(j).GetTuple(i)
properties[mesh.FindPoint(centerline.GetPoint(i))] = property_dict
distances[mesh.FindPoint(centerline.GetPoint(i))] = calcDistance2Points(mesh,mesh.FindPoint(centerline.GetPoint(i)),centerline.GetPoint(i))
#Add surface points as seed points
# print('Adding surface seed pts')
# for i in tqdm(range(0,surface.GetNumberOfPoints())):
# pt = mesh.FindPoint(surface.GetPoint(i))
# if(surface.GetPointData().GetArray('MaximumInscribedSphereRadius').GetValue(pt)>0):
# seed_pts.add(pt)
# seed_pts_array.SetValue(pt,i)
# property_dict = dict()
# for j in range(0,surface.GetPointData().GetNumberOfArrays()):
# property_dict[str(surface.GetPointData().GetArray(j).GetName())] = surface.GetPointData().GetArray(j).GetTuple(i)
# properties[mesh.FindPoint(surface.GetPoint(i))] = property_dict
# distances[mesh.FindPoint(surface.GetPoint(i))] = calcDistance2Points(mesh,mesh.FindPoint(surface.GetPoint(i)),surface.GetPoint(i))
print('Found '+str(len(list(properties)))+' seed pts.')
mesh.GetPointData().AddArray(seed_pts_array)
write_polydata(mesh,os.path.basename(args.mesh).split('.')[0]+'_mapped.'+os.path.basename(args.mesh).split('.')[1])
graph = generateGraph(mesh)
mesh = multipleSourceDistance(mesh,graph,-1,seed_pts,distances,properties)
f = open(os.path.splitext(args.out)[0] + ".pkl","wb")
pickle.dump(graph.node_properties,f)
f.close()
mesh = read_polydata(args.mesh)
f = open(os.path.splitext(args.out)[0] + ".pkl","rb")
props = pickle.load(f)
mesh = addPropertiesFromDict(mesh,props)
write_polydata(mesh,args.out)
def main(db, geometries):
for geo in geometries:
# get file paths
f_vol = os.path.join(db.get_sv_meshes(geo), geo + '.vtu')
f_0d = db.get_0d_flow_path_vtp(geo)
f_1d = db.get_1d_flow_path_vtp(geo)
f_out = db.get_initial_conditions_pressure(geo)
f_pkl = os.path.splitext(db.get_initial_conditions_pressure(geo))[0] + '.pkl'
if os.path.exists(f_out):
print(geo + ' done!')
continue
# select reduced order model
if os.path.exists(f_1d):
print(geo + ' using 1d')
f_red = f_1d
elif os.path.exists(f_0d):
print(geo + ' using 0d')
f_red = f_0d
else:
print(geo + ' no 0d/1d solution found')
continue
# set parameters
args = type('', (), {})()
args.centerline = f_red
args.mesh = f_vol
args.out = f_out
args.v = 0
if os.path.exists(f_pkl):
args.f = f_pkl
else:
args.f = None
# run projection
run(args)
if __name__ == '__main__':
descr = 'Check RCR boundary condition of 3d simulation'
d, g, _ = input_args(descr)
main(d, g)