forked from lm-sys/FastChat
-
Notifications
You must be signed in to change notification settings - Fork 21
/
gen_model_answer.py
300 lines (268 loc) · 9.13 KB
/
gen_model_answer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
"""Generate answers with local models.
Usage:
python3 gen_model_answer.py --model-path lmsys/fastchat-t5-3b-v1.0 --model-id fastchat-t5-3b-v1.0
"""
import argparse
import json
import os
import random
import time
import shortuuid
import torch
from tqdm import tqdm
from fastchat.llm_judge.common import load_questions, temperature_config
from fastchat.model import load_model, get_conversation_template
def run_eval(
model_path,
model_id,
question_file,
question_begin,
question_end,
answer_file,
max_new_token,
num_choices,
num_gpus_per_model,
num_gpus_total,
max_gpu_memory,
top_p,
repetition_penalty,
):
questions = load_questions(question_file, question_begin, question_end)
# random shuffle the questions to balance the loading
random.shuffle(questions)
# Split the question file into `num_gpus` files
assert num_gpus_total % num_gpus_per_model == 0
use_ray = num_gpus_total // num_gpus_per_model > 1
if use_ray:
get_answers_func = ray.remote(num_gpus=num_gpus_per_model)(
get_model_answers
).remote
else:
get_answers_func = get_model_answers
chunk_size = len(questions) // (num_gpus_total // num_gpus_per_model) // 2
ans_handles = []
for i in range(0, len(questions), chunk_size):
ans_handles.append(
get_answers_func(
model_path,
model_id,
questions[i : i + chunk_size],
answer_file,
max_new_token,
num_choices,
num_gpus_per_model,
max_gpu_memory,
top_p,
repetition_penalty,
)
)
if use_ray:
ray.get(ans_handles)
@torch.inference_mode()
def get_model_answers(
model_path,
model_id,
questions,
answer_file,
max_new_token,
num_choices,
num_gpus_per_model,
max_gpu_memory,
top_p,
repetition_penalty,
):
model, tokenizer = load_model(
model_path,
device="cuda",
num_gpus=num_gpus_per_model,
max_gpu_memory=max_gpu_memory,
load_8bit=False,
cpu_offloading=False,
debug=False,
)
for question in tqdm(questions):
if question["category"] in temperature_config:
temperature = temperature_config[question["category"]]
else:
temperature = 0.7
choices = []
for i in range(num_choices):
torch.manual_seed(i)
conv = get_conversation_template(model_path)
turns = []
for j in range(len(question["turns"])):
if j == args.max_turns:
break
qs = question["turns"][j]
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
# TODO: find better way to adapt for NAI tokenizer usage of JSLM Alpha
# this should align with the model adapter behavior
add_special_tokens = conv.add_special_tokens
input_ids = tokenizer([prompt], add_special_tokens=add_special_tokens).input_ids
if temperature < 1e-4:
do_sample = False
else:
do_sample = True
# some models may error out when generating long outputs
try:
output_ids = model.generate(
torch.as_tensor(input_ids).cuda(),
do_sample=do_sample,
temperature=temperature,
max_new_tokens=max_new_token,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
if model.config.is_encoder_decoder:
output_ids = output_ids[0]
else:
output_ids = output_ids[0][len(input_ids[0]) :]
output = tokenizer.decode(
output_ids,
spaces_between_special_tokens=False,
)
if conv.stop_str and output.find(conv.stop_str) > 0:
output = output[: output.find(conv.stop_str)]
for special_token in tokenizer.special_tokens_map.values():
if isinstance(special_token, list):
for special_tok in special_token:
output = output.replace(special_tok, "")
else:
output = output.replace(special_token, "")
output = output.strip()
if conv.name == "xgen" and output.startswith("Assistant:"):
output = output.replace("Assistant:", "", 1).strip()
except RuntimeError as e:
print("ERROR question ID: ", question["question_id"])
output = "ERROR"
print(e)
turns.append(output)
conv.messages[-1][-1] = output
choices.append({"index": i, "turns": turns})
# Dump answers
os.makedirs(os.path.dirname(answer_file), exist_ok=True)
with open(os.path.expanduser(answer_file), "a") as fout:
ans_json = {
"question_id": question["question_id"],
"answer_id": shortuuid.uuid(),
"model_id": model_id,
"choices": choices,
"tstamp": time.time(),
"generate_params": {
"prompt": prompt,
"do_sample": do_sample,
"max_new_token": max_new_token,
"temperature": temperature,
"top_p": top_p,
"repetition_penalty": repetition_penalty,
}
}
fout.write(json.dumps(ans_json, ensure_ascii=False) + "\n")
def reorg_answer_file(answer_file):
"""Sort by question id and de-duplication"""
answers = {}
with open(answer_file, "r") as fin:
for l in fin:
try:
qid = int(json.loads(l)["question_id"])
except ValueError:
raise NotImplementedError(f"question_id should be of integer to allow sorting. found: {qid}")
answers[qid] = l
qids = sorted(list(answers.keys()))
with open(answer_file, "w") as fout:
for qid in qids:
fout.write(answers[qid])
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model-path",
type=str,
required=True,
help="The path to the weights. This can be a local folder or a Hugging Face repo ID.",
)
parser.add_argument("--model-id", type=str, required=True)
parser.add_argument(
"--bench-name",
type=str,
default="japanese_mt_bench",
help="The name of the benchmark question set.",
)
parser.add_argument(
"--max-turns",
type=int,
default=2,
help="Max number of turns to evaluate for each question.",
)
parser.add_argument(
"--question-begin",
type=int,
help="A debug option. The begin index of questions.",
)
parser.add_argument(
"--question-end", type=int, help="A debug option. The end index of questions."
)
parser.add_argument("--answer-file", type=str, help="The output answer file.")
parser.add_argument(
"--max-new-token",
type=int,
default=512,
help="The maximum number of new generated tokens.",
)
parser.add_argument(
"--num-choices",
type=int,
default=1,
help="How many completion choices to generate.",
)
parser.add_argument(
"--num-gpus-per-model",
type=int,
default=1,
help="The number of GPUs per model.",
)
parser.add_argument(
"--num-gpus-total", type=int, default=1, help="The total number of GPUs."
)
parser.add_argument(
"--max-gpu-memory",
type=str,
help="Maxmum GPU memory used for model weights per GPU.",
)
parser.add_argument(
"--top-p",
type=float,
default=0.9,
)
parser.add_argument(
"--repetition-penalty",
type=float,
default=1.1,
)
args = parser.parse_args()
if args.num_gpus_total // args.num_gpus_per_model > 1:
import ray
ray.init()
question_file = f"data/{args.bench_name}/question.jsonl"
if args.answer_file:
answer_file = args.answer_file
else:
answer_file = f"data/{args.bench_name}/model_answer/{args.model_id}.jsonl"
print(f"Output to {answer_file}")
run_eval(
args.model_path,
args.model_id,
question_file,
args.question_begin,
args.question_end,
answer_file,
args.max_new_token,
args.num_choices,
args.num_gpus_per_model,
args.num_gpus_total,
args.max_gpu_memory,
top_p=args.top_p,
repetition_penalty=args.repetition_penalty,
)
reorg_answer_file(answer_file)