-
Notifications
You must be signed in to change notification settings - Fork 178
/
path_extrude_example.py
executable file
·226 lines (184 loc) · 8.51 KB
/
path_extrude_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#! /usr/bin/env python3
from solid.objects import linear_extrude
from solid.solidpython import OpenSCADObject
import sys
from math import cos, radians, sin, pi, tau
from pathlib import Path
from euclid3 import Point2, Point3, Vector3
from solid import scad_render_to_file, text, translate, cube, color, rotate
from solid.utils import UP_VEC, Vector23, distribute_in_grid, extrude_along_path
from solid.utils import down, right, frange, lerp
from typing import Set, Sequence, List, Callable, Optional, Union, Iterable, Tuple
SEGMENTS = 48
PATH_RAD = 50
SHAPE_RAD = 15
TEXT_LOC = [-0.6 *PATH_RAD, 1.6 * PATH_RAD]
def basic_extrude_example():
path_rad = PATH_RAD
shape = star(num_points=5)
path = sinusoidal_ring(rad=path_rad, segments=240)
# At its simplest, just sweep a shape along a path
extruded = extrude_along_path( shape_pts=shape, path_pts=path)
extruded += make_label('Basic Extrude')
return extruded
def extrude_example_xy_scaling() -> OpenSCADObject:
num_points = SEGMENTS
path_rad = PATH_RAD
circle = circle_points(15)
path = circle_points(rad = path_rad)
# If scales aren't included, they'll default to
# no scaling at each step along path.
no_scale_obj = make_label('No Scale')
no_scale_obj += extrude_along_path(circle, path)
# angles: from 0 to 6*Pi
angles = list((frange(0, 3*tau, num_steps=len(path))))
# With a 1-D scale factor, an extrusion grows and shrinks uniformly
x_scales = [(1 + cos(a)/2) for a in angles]
x_obj = make_label('1D Scale')
x_obj += extrude_along_path(circle, path, scales=x_scales)
# With a 2D scale factor, a shape's X & Y dimensions can scale
# independently, leading to more interesting shapes
# X & Y scales vary between 0.5 & 1.5
xy_scales = [Point2( 1 + cos(a)/2, 1 + sin(a)/2) for a in angles]
xy_obj = make_label('2D Scale')
xy_obj += extrude_along_path(circle, path, scales=xy_scales)
obj = no_scale_obj + right(3*path_rad)(x_obj) + right(6 * path_rad)(xy_obj)
return obj
def extrude_example_capped_ends() -> OpenSCADObject:
num_points = SEGMENTS/2
path_rad = 50
circle = star(6)
path = circle_points(rad = path_rad)[:-4]
# If `connect_ends` is False or unspecified, ends will be capped.
# Endcaps will be correct for most convex or mildly concave (e.g. stars) cross sections
capped_obj = make_label('Capped Ends')
capped_obj += extrude_along_path(circle, path, connect_ends=False, cap_ends=True)
# If `connect_ends` is specified, create a continuous manifold object
connected_obj = make_label('Connected Ends')
connected_obj += extrude_along_path(circle, path, connect_ends=True)
return capped_obj + right(3*path_rad)(connected_obj)
def extrude_example_rotations() -> OpenSCADObject:
path_rad = PATH_RAD
shape = star(num_points=5)
path = circle_points(path_rad, num_points=240)
# For a simple example, make one complete revolution by the end of the extrusion
simple_rot = make_label('Simple Rotation')
simple_rot += extrude_along_path(shape, path, rotations=[360], connect_ends=True)
# For a more complex set of rotations, add a rotation degree for each point in path
complex_rotations = []
degs = 0
oscillation_max = 60
for i in frange(0, 1, num_steps=len(path)):
# For the first third of the path, do one complete rotation
if i <= 0.333:
degs = i/0.333*360
# For the second third of the path, oscillate between +/- oscillation_max degrees
elif i <= 0.666:
angle = lerp(i, 0.333, 0.666, 0, 2*tau)
degs = oscillation_max * sin(angle)
# For the last third of the path, oscillate increasingly fast but with smaller magnitude
else:
# angle increases in a nonlinear curve, so
# oscillations should get quicker and quicker
x = lerp(i, 0.666, 1.0, 0, 2)
angle = pow(x, 2.2) * tau
# decrease the size of the oscillations by a factor of 10
# over the course of this stretch
osc = lerp(i, 0.666, 1.0, oscillation_max, oscillation_max/10)
degs = osc * sin(angle)
complex_rotations.append(degs)
complex_rot = make_label('Complex Rotation')
complex_rot += extrude_along_path(shape, path, rotations=complex_rotations)
# Make some red markers to show the boundaries between the three sections of this path
marker_w = SHAPE_RAD * 1.5
marker = translate([path_rad, 0, 0])(
cube([marker_w, 1, marker_w], center=True)
)
markers = [color('red')(rotate([0,0,120*i])(marker)) for i in range(3)]
complex_rot += markers
return simple_rot + right(3*path_rad)(complex_rot)
def extrude_example_transforms() -> OpenSCADObject:
path_rad = PATH_RAD
height = 2*SHAPE_RAD
num_steps = 120
shape = circle_points(rad=path_rad, num_points=120)
path = [Point3(0,0,i) for i in frange(0, height, num_steps=num_steps)]
max_rotation = radians(15)
max_z_displacement = height/10
up = Vector3(0,0,1)
# The transforms argument is powerful.
# Each point in the entire extrusion will call this function with unique arguments:
# -- `path_norm` in [0, 1] specifying how far along in the extrusion a point's loop is
# -- `loop_norm` in [0, 1] specifying where in its loop a point is.
def point_trans(point: Point3, path_norm:float, loop_norm: float) -> Point3:
# scale the point from 1x to 2x in the course of the
# extrusion,
scale = 1 + path_norm*path_norm/2
p = scale * point
# Rotate the points sinusoidally up to max_rotation
p = p.rotate_around(up, max_rotation*sin(tau*path_norm))
# Oscillate z values sinusoidally, growing from
# 0 magnitude to max_z_displacement, then decreasing to 0 magnitude at path_norm == 1
max_z = sin(pi*path_norm) * max_z_displacement
angle = lerp(loop_norm, 0, 1, 0, 10*tau)
p.z += max_z*sin(angle)
return p
no_trans = make_label('No Transform')
no_trans += down(height/2)(
extrude_along_path(shape, path, cap_ends=True)
)
# We can pass transforms a single function that will be called on all points,
# or pass a list with a transform function for each point along path
arb_trans = make_label('Arbitrary Transform')
arb_trans += down(height/2)(
extrude_along_path(shape, path, transforms=[point_trans], cap_ends=True)
)
return no_trans + right(3*path_rad)(arb_trans)
# ============
# = GEOMETRY =
# ============
def sinusoidal_ring(rad=25, segments=SEGMENTS) -> List[Point3]:
outline = []
for i in range(segments):
angle = radians(i * 360 / segments)
scaled_rad = (1 + 0.18*cos(angle*5)) * rad
x = scaled_rad * cos(angle)
y = scaled_rad * sin(angle)
z = 0
# Or stir it up and add an oscillation in z as well
# z = 3 * sin(angle * 6)
outline.append(Point3(x, y, z))
return outline
def star(num_points=5, outer_rad=SHAPE_RAD, dip_factor=0.5) -> List[Point3]:
star_pts = []
for i in range(2 * num_points):
rad = outer_rad - i % 2 * dip_factor * outer_rad
angle = radians(360 / (2 * num_points) * i)
star_pts.append(Point3(rad * cos(angle), rad * sin(angle), 0))
return star_pts
def circle_points(rad: float = SHAPE_RAD, num_points: int = SEGMENTS) -> List[Point2]:
angles = frange(0, tau, num_steps=num_points, include_end=True)
points = list([Point2(rad*cos(a), rad*sin(a)) for a in angles])
return points
def make_label(message:str, text_loc:Tuple[float, float]=TEXT_LOC, height=5) -> OpenSCADObject:
return translate(text_loc)(
linear_extrude(height)(
text(message)
)
)
# ===============
# = ENTRY POINT =
# ===============
if __name__ == "__main__":
out_dir = sys.argv[1] if len(sys.argv) > 1 else Path(__file__).parent
basic_extrude = basic_extrude_example()
scaled_extrusions = extrude_example_xy_scaling()
capped_extrusions = extrude_example_capped_ends()
rotated_extrusions = extrude_example_rotations()
arbitrary_transforms = extrude_example_transforms()
all_objs = [basic_extrude, scaled_extrusions, capped_extrusions, rotated_extrusions, arbitrary_transforms]
a = distribute_in_grid(all_objs,
max_bounding_box=[4*PATH_RAD, 4*PATH_RAD],
rows_and_cols=[len(all_objs), 1])
file_out = scad_render_to_file(a, out_dir=out_dir, include_orig_code=True)
print(f"{__file__}: SCAD file written to: \n{file_out}")