-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
55 lines (45 loc) · 2.15 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os
import yaml
import argparse
from pathlib import Path
from models import *
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.utilities.seed import seed_everything
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from preprocessing import MissourianImageDataset
parser = argparse.ArgumentParser(description='Generic runner for VAE models')
parser.add_argument('--config', '-c',
dest="filename",
metavar='FILE',
help='path to the config file',
default='configs/vae.yaml')
args = parser.parse_args()
with open(args.filename, 'r') as file:
try:
config = yaml.safe_load(file)
except yaml.YAMLError as exc:
print(exc)
tb_logger = TensorBoardLogger(save_dir=config['logging_params']['save_dir'],
name=config['model_params']['name'], )
# For reproducibility
seed_everything(config['exp_params']['manual_seed'], True)
model = vae_models[config['model_params']['name']](**config['model_params'], params=config['exp_params'])
data = MissourianImageDataset(**config["data_params"], pin_memory=len(config['trainer_params']['accelerator']) != 'cpu')
data.setup()
runner = Trainer(logger=tb_logger,
callbacks=[
LearningRateMonitor(logging_interval='epoch', log_momentum=True),
ModelCheckpoint(save_top_k=2,
dirpath=os.path.join(tb_logger.log_dir, "checkpoints"),
monitor="val_loss",
save_last=True),
],
strategy='ddp',
**config['trainer_params'])
Path("{}/Samples".format(tb_logger.log_dir)).mkdir(exist_ok=True, parents=True)
Path("{}/Reconstructions".format(tb_logger.log_dir)).mkdir(exist_ok=True, parents=True)
print("======= Tuning {} =======".format(config['model_params']['name']))
runner.tune(model=model, datamodule=data)
print("======= Training {} =======".format(config['model_params']['name']))
runner.fit(model=model, datamodule=data)