Skip to content

Latest commit

 

History

History
242 lines (164 loc) · 8.6 KB

0123.买卖股票的最佳时机III.md

File metadata and controls

242 lines (164 loc) · 8.6 KB

欢迎大家参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

123.买卖股票的最佳时机III

题目链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-iii/

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1: 输入:prices = [3,3,5,0,0,3,1,4] 输出:6 解释:在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3。

示例 2: 输入:prices = [1,2,3,4,5] 输出:4 解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4。注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

示例 3: 输入:prices = [7,6,4,3,1] 输出:0 解释:在这个情况下, 没有交易完成, 所以最大利润为0。

示例 4: 输入:prices = [1] 输出:0

提示:

  • 1 <= prices.length <= 10^5
  • 0 <= prices[i] <= 10^5

思路

这道题目相对 121.买卖股票的最佳时机122.买卖股票的最佳时机II 难了不少。

关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。

接来下我用动态规划五部曲详细分析一下:

  1. 确定dp数组以及下标的含义

一天一共就有五个状态, 0. 没有操作

  1. 第一次买入
  2. 第一次卖出
  3. 第二次买入
  4. 第二次卖出

dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

  1. 确定递推公式

需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票,这是很多同学容易陷入的误区

达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]

那么dp[i][1]究竟选 dp[i-1][0] - prices[i],还是dp[i - 1][1]呢?

一定是选最大的,所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);

同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]

所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

同理可推出剩下状态部分:

dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]); dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

  1. dp数组如何初始化

第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;

第0天做第一次买入的操作,dp[0][1] = -prices[0];

第0天做第一次卖出的操作,这个初始值应该是多少呢?

首先卖出的操作一定是收获利润,整个股票买卖最差情况也就是没有盈利即全程无操作现金为0,

从递推公式中可以看出每次是取最大值,那么既然是收获利润如果比0还小了就没有必要收获这个利润了。

所以dp[0][2] = 0;

第0天第二次买入操作,初始值应该是多少呢?

不用管第几次,现在手头上没有现金,只要买入,现金就做相应的减少。

所以第二次买入操作,初始化为:dp[0][3] = -prices[0];

同理第二次卖出初始化dp[0][4] = 0;

  1. 确定遍历顺序

从递归公式其实已经可以看出,一定是从前向后遍历,因为dp[i],依靠dp[i - 1]的数值。

  1. 举例推导dp数组

以输入[1,2,3,4,5]为例

123.买卖股票的最佳时机III

大家可以看到红色框为最后两次卖出的状态。

现在最大的时候一定是卖出的状态,而两次卖出的状态现金最大一定是最后一次卖出。

所以最终最大利润是dp[4][4]

以上五部都分析完了,不难写出如下代码:

// 版本一
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if (prices.size() == 0) return 0;
        vector<vector<int>> dp(prices.size(), vector<int>(5, 0));
        dp[0][1] = -prices[0];
        dp[0][3] = -prices[0];
        for (int i = 1; i < prices.size(); i++) {
            dp[i][0] = dp[i - 1][0];
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);
            dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
            dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
            dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
        }
        return dp[prices.size() - 1][4];
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n * 5)

当然,大家可以看到力扣官方题解里的一种优化空间写法,我这里给出对应的C++版本:

// 版本二
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if (prices.size() == 0) return 0;
        vector<int> dp(5, 0);
        dp[1] = -prices[0];
        dp[3] = -prices[0];
        for (int i = 1; i < prices.size(); i++) {
            dp[1] = max(dp[1], dp[0] - prices[i]);
            dp[2] = max(dp[2], dp[1] + prices[i]);
            dp[3] = max(dp[3], dp[2] - prices[i]);
            dp[4] = max(dp[4], dp[3] + prices[i]);
        }
        return dp[4];
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

大家会发现dp[2]利用的是当天的dp[1]。 但结果也是对的。

我来简单解释一下:

dp[1] = max(dp[1], dp[0] - prices[i]); 如果dp[1]取dp[1],即保持买入股票的状态,那么 dp[2] = max(dp[2], dp[1] + prices[i]);中dp[1] + prices[i] 就是今天卖出。

如果dp[1]取dp[0] - prices[i],今天买入股票,那么dp[2] = max(dp[2], dp[1] + prices[i]);中的dp[1] + prices[i]相当于是尽在再卖出股票,一买一卖收益为0,对所得现金没有影响。相当于今天买入股票又卖出股票,等于没有操作,保持昨天卖出股票的状态了。

这种写法看上去简单,其实思路很绕,不建议大家这么写,这么思考,很容易把自己绕进去!

对于本题,把版本一的写法研究明白,足以!

其他语言版本

Java:

class Solution { // 动态规划
    public int maxProfit(int[] prices) {
        // 可交易次数
        int k = 2;

        // [天数][交易次数][是否持有股票] 
        int[][][] dp = new int[prices.length][k + 1][2];

        // badcase
        dp[0][0][0] = 0;
        dp[0][0][1] = Integer.MIN_VALUE;
        dp[0][1][0] = 0;
        dp[0][1][1] = -prices[0];
        dp[0][2][0] = 0;
        dp[0][2][1] = Integer.MIN_VALUE;

        for (int i = 1; i < prices.length; i++) {
            for (int j = 2; j >= 1; j--) {
                // dp公式
                dp[i][j][0] = Math.max(dp[i - 1][j][0], dp[i - 1][j][1] + prices[i]);
                dp[i][j][1] = Math.max(dp[i - 1][j][1], dp[i - 1][j - 1][0] - prices[i]);
            }
        }

        int res = 0;
        for (int i = 1; i < 3; i++) {
            res = Math.max(res, dp[prices.length - 1][i][0]);
        }
        return res;
    }
}

Python:

Go: