-
-
Notifications
You must be signed in to change notification settings - Fork 92
/
17Actor_Critic.py
181 lines (142 loc) · 5.53 KB
/
17Actor_Critic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import argparse
import gym
import numpy as np
from itertools import count
from collections import namedtuple
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Categorical
class Policy(nn.Module):
"""
implements both actor and critic in one model
"""
def __init__(self):
super(Policy, self).__init__()
self.affine1 = nn.Linear(4, 128)
# actor's layer
self.action_head = nn.Linear(128, 2)
# critic's layer
self.value_head = nn.Linear(128, 1)
# action & reward buffer
self.saved_actions = []
self.rewards = []
def forward(self, x):
"""
forward of both actor and critic
"""
x = F.relu(self.affine1(x))
# actor: choses action to take from state s_t
# by returning probability of each action
action_prob = F.softmax(self.action_head(x), dim=-1)
# critic: evaluates being in the state s_t
state_values = self.value_head(x)
# return values for both actor and critic as a tuple of 2 values:
# 1. a list with the probability of each action over the action space
# 2. the value from state s_t
return action_prob, state_values
class Skylark_A2C():
def __init__(self, env):
self.model = Policy()
self.env = env
self.optimizer = optim.Adam(self.model.parameters(), lr = 3e-2)
self.eps = np.finfo(np.float32).eps.item()
self.SavedAction = namedtuple('SavedAction', ['log_prob', 'value'])
self.render = False
self.log_interval = 1
self.gamma = 0.99
def select_action(self, state):
state = torch.from_numpy(state).float()
probs, state_value = self.model(state)
# create a categorical distribution over the list of probabilities of actions
m = Categorical(probs)
# and sample an action using the distribution
action = m.sample()
# save to action buffer
self.model.saved_actions.append(self.SavedAction(m.log_prob(action), state_value))
# the action to take (left or right)
return action.item()
def finish_episode(self):
"""
Training code. Calculates actor and critic loss and performs backprop.
"""
R = 0
saved_actions = self.model.saved_actions
policy_losses = [] # list to save actor (policy) loss
value_losses = [] # list to save critic (value) loss
returns = [] # list to save the true values
# calculate the true value using rewards returned from the environment
for r in self.model.rewards[::-1]:
# calculate the discounted value
R = r + self.gamma * R
returns.insert(0, R)
returns = torch.tensor(returns)
returns = (returns - returns.mean()) / (returns.std() + self.eps)
for (log_prob, value), R in zip(saved_actions, returns):
advantage = R - value.item()
# calculate actor (policy) loss
policy_losses.append(-log_prob * advantage)
# calculate critic (value) loss using L1 smooth loss
value_losses.append(F.smooth_l1_loss(value, torch.tensor([R])))
# reset gradients
self.optimizer.zero_grad()
# sum up all the values of policy_losses and value_losses
loss = torch.stack(policy_losses).sum() + torch.stack(value_losses).sum()
# perform backprop
loss.backward()
self.optimizer.step()
# reset rewards and action buffer
del self.model.rewards[:]
del self.model.saved_actions[:]
def train(self, num_episodes):
running_reward = 10
# run inifinitely many episodes
for i in range(1, num_episodes):
# reset environment and episode reward
state = self.env.reset()
ep_reward = 0
# for each episode, only run 9999 steps so that we don't
# infinite loop while learning
for t in range(1, 10000):
# select action from policy
action = self.select_action(state)
# take the action
state, reward, done, _ = self.env.step(action)
if self.render:
self.env.render()
self.model.rewards.append(reward)
ep_reward += reward
if done:
break
# update cumulative reward
running_reward = 0.05 * ep_reward + (1 - 0.05) * running_reward
# perform backprop
self.finish_episode()
# log results
if i % self.log_interval == 0:
print('Episode {}\tLast reward: {:.2f}\tAverage reward: {:.2f}'.format(
i, ep_reward, running_reward))
# check if we have "solved" the cart pole problem
if running_reward > self.env.spec.reward_threshold:
print("Solved! Running reward is now {} and "
"the last episode runs to {} time steps!".format(running_reward, t))
break
if __name__ == "__main__":
use_ray = False
num_episodes = 1000
env = gym.make("CartPole-v0").env
if use_ray:
import ray
from ray import tune
tune.run(
'A2C',
config={
'env': "CartPole-v0",
'num_workers': 1,
# 'env_config': {}
}
)
else:
ac_agent = Skylark_A2C(env)
ac_agent.train(num_episodes)