- Overview
- VolumeSampler
- GridInfo
- Brep
The Voxcell Framework consists of two main classes: VolumeSampler
and Brep
.
VolumeSampler
samples the volume represented by the given MDLMesh using the depth peeling technique.
It generates a 3D volume bitmap, which is used to generate a voxelized mesh, collision balls, mass, the center of mass, and the inertia tensor.
The constructor takes the MDLMesh and other attributes, and generates a 3D volume bitmap internally.
Other member functions generate other representations based on the bitmap.
It takes the MDLMesh and associated attributes, and generates a 3D volume bitmap to its public member property volumeBitmap
.
public init(
device: MTLDevice,
useExternalShader: Bool,
mdlMesh: MDLMesh,
texture: MTLTexture?,
defaultColor: SIMD3<Float>?,
pitch: Float,
epsilon: Float
) {
device:
Metal deviceuseExternalShader:
Default is False. Set it to true for debugging. Internally, if this is set to false, the shader code hardcoded inDepthPeelerShadersString.swift
is compiled at runtime. If this is set to true, then the shader functions are searched from the system's default library. You can copy DepthPeelerShadersTypes.{h,metal} to your app's default Bundle.mdlMesh
: The 3D model to be scannedtexture:
Associated color texture for the 3D model (optional). Usually the color texture is specified in themap_Kd
attribute in the MTL file associated to the OBJ file.defaultColor:
Color used if the texture is not given (optional)pitch:
The grid pitch of the isometric 3D grid in which the 3D models is scanned. Please be careful not to make this value small. For example, if the extent (W/H/D) of the model's coordinates is (10.0/10.0/10.0) and if pitch is set to 0.001, then it will try to make a bitmap of dimension (10000 x 10000 x 10000). The size of the bitmap would be 125 GB, which is way beyond the managable range.epsilon:
Perturbation added when the ray position is updated in the shader for the next peeling to avoid detecting the same intersection again due to numerical errors.
Example
import Voxcell
let volumeSampler = VolumeSampler(
device: device,
useExternalShader: false,
mdlMesh: mdlMeshFromMDLAsset,
texture: texture,
defaultColor: SIMD3<Float>( 0.8, 0.8, 0.8 ),
pitch: 0.1,
epsilon: 0.0001 )
The grid information used for the volume sampling.
Example
volumeSampler.gridInfo
The sampled 3D volume bitmap. True indicates that the cell contains the boundary of the object, or enclosed inside of the object. False indicates that the cell is outside of the object. Two operations are available
public func isSet( x: Int, y: Int, z: Int ) -> Bool
Returns true if the bit for the given integer coordinate is set.
- parameter x: integer x-coordinate
- parameter y: integer y-coordinate
- parameter z: integer z-coordinate
- returns true if the bit is set.
public func isNotSet( x: Int, y: Int, z: Int ) -> Bool
Returns false if the bit for the given integer coordinate is set.
- parameter x: integer x-coordinate
- parameter y: integer y-coordinate
- parameter z: integer z-coordinate
- returns true if the bit is set.
Example
let zeroPos: Bool = volumeSampler.volumeBitmap!.isSet( x: 0, y: 0, z: 0 )
Generates MDLMesh of the voxelized object in a composition of quads.
- parameter
vertexDescriptor:
Vertex descriptor to describe the memory layouts(optional) - parameter
material:
Material used for MDLSubmeshes in MDLMesh(optional) - parameter
useTextureColors:
Set it to True, if you want to use the sampled colors from the texture. False, if you want to use the color specified in material, or the default color specified to the constructor. - returns MDLMesh generated
public func generateMDLMesh(
vertexDescriptor: MDLVertexDescriptor?,
material: MDLMaterial?,
useTextureColors: Bool
) -> MDLMesh?
If vertexDescriptor is not specified, the following descriptor is used. For the other variations, please see Voxcell/Modeling/RenderUtil.swift
static func defaultVertexDescriptorPositionNormalColor() -> MDLVertexDescriptor {
let layout0 = MDLVertexBufferLayout()
layout0.stride = MemoryLayout<SIMD3<Float>>.stride
+ MemoryLayout<SIMD3<Float>>.stride
+ MemoryLayout<SIMD3<Float>>.stride
let attribute0 = MDLVertexAttribute()
attribute0.name = MDLVertexAttributePosition
attribute0.format = MDLVertexFormat.float3
attribute0.bufferIndex = 0
attribute0.offset = 0
let attribute1 = MDLVertexAttribute()
attribute1.name = MDLVertexAttributeNormal
attribute1.format = MDLVertexFormat.float3
attribute1.bufferIndex = 0
attribute1.offset = MemoryLayout<SIMD3<Float>>.stride
let attribute2 = MDLVertexAttribute()
attribute2.name = MDLVertexAttributeColor
attribute2.format = MDLVertexFormat.float3
attribute2.bufferIndex = 0
attribute2.offset = MemoryLayout<SIMD3<Float>>.stride + MemoryLayout<SIMD3<Float>>.stride
let vertexDescriptor = MDLVertexDescriptor()
vertexDescriptor.layouts = [ layout0 ]
vertexDescriptor.attributes = [ attribute0, attribute1, attribute2 ]
}
If material is not specified, the following is used.
Please see Voxcell/Modeling/RenderUtil.swift
The color is taken from the default color specified to the constructor of VolumeSampler
.
static func defaultMaterial( color: SIMD3<Float> ) -> MDLMaterial {
let scatteringFunction = MDLScatteringFunction()
let material = MDLMaterial( name: "Brep", scatteringFunction: scatteringFunction )
material.setProperty( MDLMaterialProperty(
name: "baseColor",
semantic: .baseColor,
float3: color
) )
material.setProperty( MDLMaterialProperty(
name: "specular",
semantic: .specular,
float3: vector_float3( 0.8, 0.8 ,0.8 )
) )
material.setProperty( MDLMaterialProperty(
name: "specularComponent",
semantic: .specularExponent ,
float: 255.0
) )
material.setProperty( MDLMaterialProperty(
name: "opacity",
semantic: .opacity ,
float: 0.2
) )
return material
}
public func shrinkByHalfStep() -> Void
Shrinks the size of the grid by one grid pitch along all the three axes.
Assume the current extent in the x-axis is [-3.0, 5.0]
and the pitch is 1.0
.
The number of cells along the x-axis (dimension of x) is 8, and the range of the corresponding integer coordinates is [0, 8]
. After the shrinking,
The extent will be [-2.5, 4.5]
, and the dimension becomes 7
and the integer range becomes [0,7]
The pitch does not change.
Conceptually, the points that corresponded to the vertices of the cubes become center point of the cubes in the new shrunk grid. The bit in the new grid is set if more than or equal to 4 bits in the 8 surrounding cells are set (except for the boundary cells).
For example the bit at the integer coordinate [3,4,5]
in the new grid is set if more than or equal to 4 bits in the following 8 integer coordinates in the old grid are set:
`[3,4,5], [4,4,5], [3,5,5], [4,5,5], [3,4,6], [4,4,6], [3,5,6], [4,5,6]`
This can be useful for collision detectors where it is desirable for the collision spheres to be nearly fully inside the original 3D object.
public func findShell() -> [SIMD3<Int32>]
Finds the integer coordinates of the cells that are at the boundary of the voxelized volume. A cell is at the boundary if not all of its 6 orthogonally adjacent cells are set.
- returns array of integer coordinates in the grid.
public func findShellCenterPoints() -> [SIMD3<Float>]
Finds the 3D spatial coordinates of the center point of the cells that are at the boundary of the voxelized volume. This is useful for generating collision spheres of the 3D object for collision detection. A cell is at the boundary if not all of its 6 orthogonally adjacent cells are set.
- returns array of geometric coordinates in the grid.
public func findMass( densityPerUnitVolume: Float ) -> Float
Finds the total mass by sampling based on the volume represented by the bitmap.
- parameter densityPerUnitVolume
- returns Mass
public func findCenterOfMass() -> SIMD3<Float>
Finds the center of mass by sampling based on the volume represented by the bitmap.
- returns CoM in the 3D spatial coordinates.
public func findInertiaTensor( densityPerUnitVolume density: Float ) -> float3x3
Finds the 3x3 inertia tensor by sampling based on the volume represented by the bitmap.
- returns intertia tensor
Represents the geometric information of the grid.
It uses to coordinate system, integer corrdinate system [i,j,k]
in Int
and the spatial coordinate system (x,y,z)
in Float
.
[0,0,0]
coresponds to extentMin
and [dimension.x, dimension.y, dimension.z]
corresponds to extentMax
. extentMax - extentMin
is a multiple of pitch
, and the multipliers are dimensions
, i.e., extentMax.x - extentMin.x = pitch * dimension.x
.
public let extentMin: SIMD3<Float>
public let extentMax: SIMD3<Float>
public let dimension: SIMD3<Int>
public let pitch: Float
'Brep' represents a closed boundary of piese-wise linear 3D objects in a planar graph embedding.
Please see Voxcell/Brep/Brep.swift.
It consists of the following three lists as properties.
public var vertices = OwnerList()
public var halfEdges = OwnerList()
public var faces = OwnerList()
The definitions of the three features are as follows.
public class Vertex : ListElem {
public var outgoingHalfEdges = WeakList1()
public var point = SIMD3<Float>(0,0,0)
init(_ v : SIMD3<Float>) {
point = v
}
}
public class HalfEdge : ListElemWithWeakChain2 {
public weak var src : Vertex?
public weak var dst : Vertex?
public weak var prevHalfEdge : HalfEdge?
public weak var nextHalfEdge : HalfEdge?
public weak var buddyHalfEdge : HalfEdge?
public weak var face : Face?
}
public class Face : ListElem {
public var halfEdges = WeakList2()
public var normal = SIMD3<Float>(0,0,0)
public var tangent = SIMD3<Float>(0,0,0)
public var bitangent = SIMD3<Float>(0,0,0)
public var textureCoordinates : [SIMD2<Float>]?
}
For the meaning of each feature and its properties, please see Doubly connected edge list.
It has the following member function to generate MDLMesh, and the two static functions are available to generate Brep
.
public func generateMDLMesh(
device: MTLDevice,
type: MDLGeometryType,
vertexDescriptor: MDLVertexDescriptor?,
material: MDLMaterial?,
color: SIMD3<Float>?
) -> MDLMesh?
Constructs a MDLMesh per MDLVertexDescriptor.
- parameter device: The Metal device used
- parameter type: geometry type. Any of
.triangles
,.lines
, or.points
.lines and .points NOT YET SUPPORTED - parameter vertexDescriptor: spec for the buffer in layouts and attributes. If nil, the following default values are used.
- parameter material: spec for the material properties. If nil, the following default values are used.
- parameter color: RGBA for the mesh to be generated. If the vertex descriptor contains an attribute
MDLVertexAttributeColor
, then this value is used.
Acceptable values for MDLVertexDescriptor
type == .triangles
MDLVertexAttributePosition
(float3
orfloat4
) iffloat4
is specifiedw
is set to 1.MDLVertexAttributeNormal
(float3
orfloat4
) iffloat4
is specifiedw
is set to 0.MDLVertexAttributeTextureCoordinate
(float2
)MDLVertexAttributeTangent
(float3
orfloat4
) iffloat4
is specifiedw
is set to 0.MDLVertexAttributeBitangent
(float3
orfloat4
) iffloat4
is specifiedw
is set to 0.MDLVertexAttributeColor
(float3
orfloat4
) RGB or RGBA
type == .lines or .points NOT YET SUPPORTED
MDLVertexAttributePosition
(float3
orfloat4
) iffloat4
is specifiedw
is set to 1.MDLVertexAttributeColor
(float3
orfloat4
) RGB or RGBAMDLVertexAttributeTextureCoordinate
(float2
)
The default MDLVertexDescriptor
layout[0].stride = MemoryLayout<SIMD3<Float>>.stride // point
+ MemoryLayout<SIMD3<Float>>.stride // normal
+ MemoryLayout<SIMD4<Float>>.stride // color
attribute[0].name = MDLVertexAttributePosition
attribute[0].format = MDLVertexFormat.float3
attribute[0].bufferIndex = 0
attribute[0].offset = 0
attribute[1].name = MDLVertexAttributeNormal
attribute[1].format = MDLVertexFormat.float3
attribute[1].bufferIndex = 1
attribute[1.]offset = MemoryLayout<SIMD3<Float>>.stride
attribute[2].name = MDLVertexAttributeColor
attribute[2].format = MDLVertexFormat.float4
attribute[2].bufferIndex = 1
attribute[2.]offset = MemoryLayout<SIMD3<Float>>.stride + MemoryLayout<SIMD3<Float>>.stride
The default MDLMaterial
scatteringFunction: MDLScatteringFunction()
name: 'Brep'
MDLMaterialProperty( name: "baseColor", semantic: .baseColor, float3: color or vector_float3(0.5, 0.5 ,0.5) )
MDLMaterialProperty( name: "specular", semantic: .specular, float3: vector_float3(0.8, 0.8 ,0.8) )
MDLMaterialProperty( name: "specularComponent", semantic: .specularExponent, float: 255.0) )
MDLMaterialProperty( name: "opacity", semantic: .opacity, float: 0.2) )
- returns: A MDLMesh of this Brep.
static public func findConvexHull( vertices : [ SIMD3<Float> ] ) -> Brep
Constructs a convex hull from the given list of points please see BrepConvexHullExtension.swift
-
Construction depends on the C++ implementation found in
manifold_convex_hull.cpp
-
If the given set of points does not form at least 3-simplex, it returns an empty Brep with no vertex, no faces, and no half-edges.
-
Algorithm
- Peform the principal component analysis.
- Find the 2 extremal points along the primary axis, and other 2 extremal points along the secondary axis.
- Form an initial 3-simplex from the 4 points.
- For the rest of the points, incrementally test each point according to Clarkson & Shor algorithm described in de Berg, van Kreveld, Overmars, & Cheong(Schwarzkopf).
-
parameter
vertices:
Array of points -
returns: A Brep that represents the convex hull.
-
seealso : Ref1: K.L. Clarkson, P. W. Schor. Applications of random sampling in computational geometry II, Discrete Comput. Gem. 4: 387-421, 1989
-
seealso : Ref2 : de Berg, Cheong, van Kreveld, & Overmars, Computational Geometry, Springer-Verlag, 2008, 978-3-540-77973-5
Constructs the optimum oriented bounding box from the given list of points
static public func findOrientedBoundingBox( vertices : [ SIMD3<Float> ] ) -> Brep