-
Notifications
You must be signed in to change notification settings - Fork 131
/
layers.py
257 lines (228 loc) · 9.94 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
from __future__ import absolute_import
from __future__ import unicode_literals
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
class LearnedGroupConv(nn.Module):
global_progress = 0.0
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1,
condense_factor=None, dropout_rate=0.):
super(LearnedGroupConv, self).__init__()
self.norm = nn.BatchNorm2d(in_channels)
self.relu = nn.ReLU(inplace=True)
self.dropout_rate = dropout_rate
if self.dropout_rate > 0:
self.drop = nn.Dropout(dropout_rate, inplace=False)
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride,
padding, dilation, groups=1, bias=False)
self.in_channels = in_channels
self.out_channels = out_channels
self.groups = groups
self.condense_factor = condense_factor
if self.condense_factor is None:
self.condense_factor = self.groups
### Parameters that should be carefully used
self.register_buffer('_count', torch.zeros(1))
self.register_buffer('_stage', torch.zeros(1))
self.register_buffer('_mask', torch.ones(self.conv.weight.size()))
### Check if arguments are valid
assert self.in_channels % self.groups == 0, "group number can not be divided by input channels"
assert self.in_channels % self.condense_factor == 0, "condensation factor can not be divided by input channels"
assert self.out_channels % self.groups == 0, "group number can not be divided by output channels"
def forward(self, x):
self._check_drop()
x = self.norm(x)
x = self.relu(x)
if self.dropout_rate > 0:
x = self.drop(x)
### Masked output
weight = self.conv.weight * self.mask
return F.conv2d(x, weight, None, self.conv.stride,
self.conv.padding, self.conv.dilation, 1)
def _check_drop(self):
progress = LearnedGroupConv.global_progress
delta = 0
### Get current stage
for i in range(self.condense_factor - 1):
if progress * 2 < (i + 1) / (self.condense_factor - 1):
stage = i
break
else:
stage = self.condense_factor - 1
### Check for dropping
if not self._reach_stage(stage):
self.stage = stage
delta = self.in_channels // self.condense_factor
if delta > 0:
self._dropping(delta)
return
def _dropping(self, delta):
weight = self.conv.weight * self.mask
### Sum up all kernels
### Assume only apply to 1x1 conv to speed up
assert weight.size()[-1] == 1
weight = weight.abs().squeeze()
assert weight.size()[0] == self.out_channels
assert weight.size()[1] == self.in_channels
d_out = self.out_channels // self.groups
### Shuffle weight
weight = weight.view(d_out, self.groups, self.in_channels)
weight = weight.transpose(0, 1).contiguous()
weight = weight.view(self.out_channels, self.in_channels)
### Sort and drop
for i in range(self.groups):
wi = weight[i * d_out:(i + 1) * d_out, :]
### Take corresponding delta index
di = wi.sum(0).sort()[1][self.count:self.count + delta]
for d in di.data:
self._mask[i::self.groups, d, :, :].fill_(0)
self.count = self.count + delta
@property
def count(self):
return int(self._count[0])
@count.setter
def count(self, val):
self._count.fill_(val)
@property
def stage(self):
return int(self._stage[0])
@stage.setter
def stage(self, val):
self._stage.fill_(val)
@property
def mask(self):
return Variable(self._mask)
def _reach_stage(self, stage):
return (self._stage >= stage).all()
@property
def lasso_loss(self):
if self._reach_stage(self.groups - 1):
return 0
weight = self.conv.weight * self.mask
### Assume only apply to 1x1 conv to speed up
assert weight.size()[-1] == 1
weight = weight.squeeze().pow(2)
d_out = self.out_channels // self.groups
### Shuffle weight
weight = weight.view(d_out, self.groups, self.in_channels)
weight = weight.sum(0).clamp(min=1e-6).sqrt()
return weight.sum()
def ShuffleLayer(x, groups):
batchsize, num_channels, height, width = x.data.size()
channels_per_group = num_channels // groups
### reshape
x = x.view(batchsize, groups,
channels_per_group, height, width)
### transpose
x = torch.transpose(x, 1, 2).contiguous()
### flatten
x = x.view(batchsize, -1, height, width)
return x
class CondensingLinear(nn.Module):
def __init__(self, model, drop_rate=0.5):
super(CondensingLinear, self).__init__()
self.in_features = int(model.in_features*drop_rate)
self.out_features = model.out_features
self.linear = nn.Linear(self.in_features, self.out_features)
self.register_buffer('index', torch.LongTensor(self.in_features))
_, index = model.weight.data.abs().sum(0).sort()
index = index[model.in_features-self.in_features:]
self.linear.bias.data = model.bias.data.clone()
for i in range(self.in_features):
self.index[i] = index[i]
self.linear.weight.data[:, i] = model.weight.data[:, index[i]]
def forward(self, x):
x = torch.index_select(x, 1, Variable(self.index))
x = self.linear(x)
return x
class CondensingConv(nn.Module):
def __init__(self, model):
super(CondensingConv, self).__init__()
self.in_channels = model.conv.in_channels \
* model.groups // model.condense_factor
self.out_channels = model.conv.out_channels
self.groups = model.groups
self.condense_factor = model.condense_factor
self.norm = nn.BatchNorm2d(self.in_channels)
self.relu = nn.ReLU(inplace=True)
self.conv = nn.Conv2d(self.in_channels, self.out_channels,
kernel_size=model.conv.kernel_size,
padding=model.conv.padding,
groups=self.groups,
bias=False,
stride=model.conv.stride)
self.register_buffer('index', torch.LongTensor(self.in_channels))
index = 0
mask = model._mask.mean(-1).mean(-1)
for i in range(self.groups):
for j in range(model.conv.in_channels):
if index < (self.in_channels // self.groups) * (i + 1) \
and mask[i, j] == 1:
for k in range(self.out_channels // self.groups):
idx_i = int(k + i * (self.out_channels // self.groups))
idx_j = index % (self.in_channels // self.groups)
self.conv.weight.data[idx_i, idx_j, :, :] = \
model.conv.weight.data[int(i + k * self.groups), j, :, :]
self.norm.weight.data[index] = model.norm.weight.data[j]
self.norm.bias.data[index] = model.norm.bias.data[j]
self.norm.running_mean[index] = model.norm.running_mean[j]
self.norm.running_var[index] = model.norm.running_var[j]
self.index[index] = j
index += 1
def forward(self, x):
x = torch.index_select(x, 1, Variable(self.index))
x = self.norm(x)
x = self.relu(x)
x = self.conv(x)
x = ShuffleLayer(x, self.groups)
return x
class CondenseLinear(nn.Module):
def __init__(self, in_features, out_features, drop_rate=0.5):
super(CondenseLinear, self).__init__()
self.in_features = int(in_features*drop_rate)
self.out_features = out_features
self.linear = nn.Linear(self.in_features, self.out_features)
self.register_buffer('index', torch.LongTensor(self.in_features))
def forward(self, x):
x = torch.index_select(x, 1, Variable(self.index))
x = self.linear(x)
return x
class CondenseConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size,
stride=1, padding=0, groups=1):
super(CondenseConv, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.groups = groups
self.norm = nn.BatchNorm2d(self.in_channels)
self.relu = nn.ReLU(inplace=True)
self.conv = nn.Conv2d(self.in_channels, self.out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=self.groups,
bias=False)
self.register_buffer('index', torch.LongTensor(self.in_channels))
self.index.fill_(0)
def forward(self, x):
x = torch.index_select(x, 1, Variable(self.index))
x = self.norm(x)
x = self.relu(x)
x = self.conv(x)
x = ShuffleLayer(x, self.groups)
return x
class Conv(nn.Sequential):
def __init__(self, in_channels, out_channels, kernel_size,
stride=1, padding=0, groups=1):
super(Conv, self).__init__()
self.add_module('norm', nn.BatchNorm2d(in_channels))
self.add_module('relu', nn.ReLU(inplace=True))
self.add_module('conv', nn.Conv2d(in_channels, out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding, bias=False,
groups=groups))