-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdata_preprocess.py
289 lines (233 loc) · 10.1 KB
/
data_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import metadata
from sklearn import preprocessing as preproc
from collections import defaultdict
from sklearn.feature_extraction import DictVectorizer
import pandas as pd
import numpy as np
import gc
import os.path
import logging
TRENDS_PATH = "trends"
DATA_PATH = "data/"
class TechnologyManager:
def __init__(self, tech_name):
self.tech_name = tech_name
self.series = []
def add(self, series, source):
series.name = self.tech_name + "(" + source + ")"
self.series.append(series)
def save(self, save_path):
for num, series in enumerate(self.series):
if not os.path.exists(save_path):
os.makedirs(save_path)
file_path = os.path.join(save_path, series.name + ".csv")
series.to_csv(file_path)
class TrendsManager:
def __init__(self, tech_ids):
self.techs = {}
self.tech_ids = tech_ids
def add_tech(self, series, name=None, source=None, id=None):
if pd.isnull(series.iloc[0]):
return None
if source is None:
source = ""
if id is not None:
self.add_tech(self.tech_ids[id], series)
elif name is not None:
if name not in self.techs:
self.techs[name] = TechnologyManager(name)
self.techs[name].add(series, source)
def save(self, save_path=TRENDS_PATH):
for tech_manager in self.techs.values():
tech_manager.save(save_path)
def read(self, dir_path=TRENDS_PATH):
files = [f for f in os.listdir(dir_path) if os.path.isfile(os.path.join(dir_path, f))]
for file in files:
name, ext = os.path.splitext(file)
if ext != ".csv":
continue
series = pd.Series.from_csv(os.path.join(dir_path, file))
if series is not None:
source = name.split("(")[-1].rstrip(")")
name = "(".join(name.split("(")[:-1])
self.add_tech(series, name=name, source=source)
class DataManager:
def __init__(self, main_data_frame, trends_manager=None):
self.main_data_frame = main_data_frame
self.trends_manager = trends_manager
def del_columns(data, column_names):
for column_name in column_names:
if column_name in data.columns:
del data[column_name]
def preprocess_categorical(data, column_names):
labeler = preproc.LabelEncoder()
for column_name in column_names:
try:
data[column_name] = labeler.fit_transform(data[column_name])
dummies_df = pd.get_dummies(data[column_name])
dummies_df.columns = list(map(lambda x: column_name + "_" + str(x), dummies_df.columns))
data = pd.merge(data, dummies_df, left_index=True, right_index=True)
except:
del data[column_name]
return data
def normalize(dataframe, columns):
for column in columns:
dataframe[column] = preproc.scale(dataframe[column])
return dataframe
def remove_nans(data):
data = data.dropna(axis=1, how='all')
data = data.dropna(axis=0, how='any')
for column_name in data.columns.values:
try:
data = data[np.isfinite(data[column_name])]
except:
logging.debug("column '%s' doesn't integral type " % column_name)
return data
def get_resellers(file_path=DATA_PATH+"reseller_id_new.csv"):
resellers = pd.read_csv(file_path)
percent_columns = ["Percent_0", "Percent_5", "Percent_10", "Percent_15", "Percent_20"]
def get_discount(x):
if x.isnull().sum() == len(x):
return 0
return (resellers.columns.get_loc(x.argmax()) - 1) * 5
resellers["discount"] = resellers[percent_columns].apply(get_discount, axis=1)
resellers.rename(inplace=True, columns={'Reseller Code': 'reseller_id',
'discount': 'reseller_discount',
'Grand Total': 'reseller_volume'})
resellers['reseller_id'].fillna(0, inplace=True)
resellers['reseller_id'] = resellers['reseller_id'].astype(int)
return resellers
def calc_trends(trends_file_path=DATA_PATH+"trend_dump_clear.txt"):
gc.disable()
f = open(trends_file_path)
trends = defaultdict(lambda: defaultdict(lambda: []))
date_line = []
trends_ids = set()
sources = set()
for line in f:
arr = line.split("\t")
if len(arr) < 4:
continue
source = arr[0]
trend_id = int(arr[1])
date = pd.to_datetime(arr[2])
date = pd.to_datetime(str(date.date()))
value = float(arr[3])
if date.year < 2009 or date.year > 2015 or trend_id not in metadata.used_tech:
continue
date_line.append(date)
trends_ids |= {trend_id}
sources |= {source}
trends[source][trend_id].append([date, value])
date_line = pd.date_range(min(date_line), max(date_line), freq='D')
columns = ["Date"] + [x for x in map(lambda trend_id: metadata.tech_ids[trend_id], trends_ids)]
trends_matr = defaultdict(lambda: defaultdict(lambda: []))
for source in sources:
for date in date_line:
trends_matr[source][date] = [pd.to_datetime(date)] + [np.nan] * (len(columns) - 1)
columns_dict = {}
for i, trend_id in enumerate(trends_ids):
columns_dict[trend_id] = i + 1
for source in sources:
for trend_id in trends[source]:
for pair in trends[source][trend_id]:
date = pair[0]
value = pair[1]
idx = columns_dict[trend_id]
trends_matr[source][date][idx] = value
trends = {}
for source in sources:
trends[source] = pd.DataFrame(list(trends_matr[source].values()), columns=columns)
trends[source] = trends[source].set_index(pd.DatetimeIndex(trends[source]["Date"]))
del trends[source]["Date"]
trends[source] = trends[source].sort_index()
gc.enable()
trends_manager = TrendsManager(metadata.tech_ids)
for source in sources:
frame = trends[source]
for column in trends[source].columns:
column_mean = frame[column].ewm(span=12).mean()
frame[column][np.abs(frame[column] - column_mean) > (0.05 * frame[column].std())] = np.nan
frame[column].interpolate(method="values", inplace=True)
frame[column][frame[column] == 0] = np.nan
frame[column].interpolate(method="values", inplace=True)
# fig = plt.figure()
# fig.suptitle(source)
# frame.plot()
trends[source] = frame.ewm(span=12).mean()
for column in trends[source].columns:
trends_manager.add_tech(trends[source][column], name=column, source=source)
# roll = frame.rolling(window=12)
# frame.plot()
# roll.mean().plot()
# plt.show()
return trends_manager
def save_data(dataframe, file_name=DATA_PATH+"preprocessed_data.csv"):
dataframe.to_csv(file_name)
def calc_data(file_name=DATA_PATH+'resellers_data.csv', only_resellers=True):
logging.info("start process file %s" % file_name)
data = pd.read_csv(file_name, low_memory=False)
logging.info("reading file %s complete" % file_name)
if only_resellers:
data = data[data['reseller_id'] != 0]
logging.info("direct sells filtered")
data['placed_date'] = pd.to_datetime(data['placed_date'])
logging.info("date index is set")
stock_shorts = metadata.stock_short_name_ids
stock_ids = metadata.stock_ids
def stocks_mapper(stock_name):
return next(x for x in stock_shorts.items() if stock_name.startswith(x[0]))[1]
def main_tech_mapper(row):
return stock_ids[row["stock_id"]][1]
data["stock_id"] = data["stock_id"].apply(stocks_mapper)
logging.info("stock_id evaluated")
data["main_tech_id"] = data.apply(main_tech_mapper, axis=1)
logging.info("main_tech_id evaluated")
v = DictVectorizer()
techs_df = v.fit_transform(metadata.stock_ids_table)
techs_df = pd.DataFrame(techs_df.todense(), columns=v.get_feature_names())
data = pd.merge(data, techs_df, on='stock_id')
logging.info("additional techs evaluated")
v2 = DictVectorizer()
countries = v2.fit_transform(metadata.countries_data)
countries = pd.DataFrame(countries.todense(), columns=v2.get_feature_names())
countries["iso"] = list(map(lambda d: d["iso"], metadata.countries_data))
logging.info("countries data prepared")
data = pd.merge(data, countries, on='iso')
logging.info("countries data merged")
data['discount_desc'] = data['discount_desc'].notnull()
data = preprocess_categorical(data, metadata.preprocess_columns)
logging.info("categorical data evaluated")
del_columns(data, metadata.del_column_names)
logging.info("worse columns removed")
resellers_df = get_resellers()[['reseller_id', 'reseller_volume', 'reseller_discount']]
logging.info("resellers data prepared")
data['reseller_id'].fillna(0, inplace=True)
data['reseller_id'] = data['reseller_id'].astype(int)
data = pd.merge(data, resellers_df, on='reseller_id')
logging.info("resellers data merged")
data = data.set_index(pd.DatetimeIndex(data['placed_date']))
data = data.sort_index()
data = remove_nans(data)
logging.info("nans removed")
return data
def get_trends(calc=False, trends_file_path=DATA_PATH+"trend_dump_clear.txt", path=TRENDS_PATH):
if calc:
trends_manager = calc_trends(trends_file_path)
trends_manager.save(TRENDS_PATH)
return trends_manager
trends_manager = TrendsManager(metadata.tech_ids)
trends_manager.read(path)
return trends_manager
def get_data(calc=False, calc_trends=False, preproc_file_name=DATA_PATH+"preprocessed_data.csv",
file_name=DATA_PATH+"purchases_org_resellers.csv"):
if calc:
df = calc_data(file_name)
save_data(df)
else:
df = pd.read_csv(preproc_file_name)
df.rename({"Unnamed: 0": "placed_date"}, inplace=True)
del df["Unnamed: 0"]
df = df.set_index(pd.DatetimeIndex(df["placed_date"]))
trends_manager = get_trends(calc_trends)
return DataManager(df, trends_manager)