diff --git a/lib/iris/tests/results/netcdf/int64_data_netcdf3.cml b/lib/iris/tests/results/netcdf/int64_data_netcdf3.cml index f1e9a3bb2c..93da2db83d 100644 --- a/lib/iris/tests/results/netcdf/int64_data_netcdf3.cml +++ b/lib/iris/tests/results/netcdf/int64_data_netcdf3.cml @@ -1,6 +1,6 @@ - + diff --git a/lib/iris/tests/results/netcdf/netcdf_units_0.cml b/lib/iris/tests/results/netcdf/netcdf_units_0.cml index 363577c6f1..18a561b2e9 100644 --- a/lib/iris/tests/results/netcdf/netcdf_units_0.cml +++ b/lib/iris/tests/results/netcdf/netcdf_units_0.cml @@ -1,6 +1,6 @@ - + diff --git a/lib/iris/tests/results/netcdf/uint32_data_netcdf3.cml b/lib/iris/tests/results/netcdf/uint32_data_netcdf3.cml index f1e9a3bb2c..05ac5ec7a8 100644 --- a/lib/iris/tests/results/netcdf/uint32_data_netcdf3.cml +++ b/lib/iris/tests/results/netcdf/uint32_data_netcdf3.cml @@ -1,6 +1,6 @@ - + diff --git a/lib/iris/tests/test_pickling.py b/lib/iris/tests/test_pickling.py index 097fabdf4e..b94ddfd947 100644 --- a/lib/iris/tests/test_pickling.py +++ b/lib/iris/tests/test_pickling.py @@ -55,9 +55,7 @@ def pickle_then_unpickle(self, obj): def _real_data(cube): # Get the concrete data of the cube for performing data values # comparison checks. - return as_concrete_data(cube.core_data(), - nans_replacement=cube.fill_value, - result_dtype=cube.dtype) + return as_concrete_data(cube.core_data()) def assertCubeData(self, cube1, cube2): self.assertArrayEqual(self._real_data(cube1), self._real_data(cube2)) diff --git a/lib/iris/tests/unit/analysis/test_MEAN.py b/lib/iris/tests/unit/analysis/test_MEAN.py index 6460137419..3d40e7eb5e 100644 --- a/lib/iris/tests/unit/analysis/test_MEAN.py +++ b/lib/iris/tests/unit/analysis/test_MEAN.py @@ -43,13 +43,13 @@ def setUp(self): def test_mdtol_default(self): agg = MEAN.lazy_aggregate(self.array, axis=self.axis) - masked_result = as_concrete_data(agg, nans_replacement=ma.masked) + masked_result = as_concrete_data(agg) self.assertMaskedArrayAlmostEqual(masked_result, self.expected_masked) def test_mdtol_below(self): agg = MEAN.lazy_aggregate(self.array, axis=self.axis, mdtol=0.3) - masked_result = as_concrete_data(agg, nans_replacement=ma.masked) + masked_result = as_concrete_data(agg) expected_masked = self.expected_masked expected_masked.mask = [False, True, True, True] self.assertMaskedArrayAlmostEqual(masked_result, @@ -57,7 +57,7 @@ def test_mdtol_below(self): def test_mdtol_above(self): agg = MEAN.lazy_aggregate(self.array, axis=self.axis, mdtol=0.4) - masked_result = as_concrete_data(agg, nans_replacement=ma.masked) + masked_result = as_concrete_data(agg) self.assertMaskedArrayAlmostEqual(masked_result, self.expected_masked) @@ -66,7 +66,7 @@ def test_multi_axis(self): collapse_axes = (0, 2) lazy_data = as_lazy_data(data) agg = MEAN.lazy_aggregate(lazy_data, axis=collapse_axes) - result = as_concrete_data(agg, nans_replacement=ma.masked) + result = as_concrete_data(agg) expected = np.mean(data, axis=collapse_axes) self.assertArrayAllClose(result, expected)