-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathpretraining.py
77 lines (69 loc) · 2.96 KB
/
pretraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import torch
from pocket_flow.gdbp_model import PocketFlow
from pocket_flow.utils import Experiment, LoadDataset
from pocket_flow.utils.transform import *
from pocket_flow.utils.data import ComplexData, torchify_dict
import os
from easydict import EasyDict
torch.multiprocessing.set_sharing_strategy('file_system')
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
encoder_cfg = EasyDict(
{'edge_channels':8, 'num_interactions':6, 'num_heads':4,
'knn':16, 'cutoff':10.0}
)
focal_net_cfg = EasyDict(
{'hidden_dim_sca':64, 'hidden_dim_vec':8}
)
atom_flow_cfg = EasyDict(
{'hidden_dim_sca':64, 'hidden_dim_vec':8, 'num_flow_layers':6}
)
pos_predictor_cfg = EasyDict(
{'num_filters':[64,64], 'n_component':3}
)
pos_filter_cfg = EasyDict(
{'edge_channels':8, 'num_filters':[64,16]}
)
edge_flow_cfg = EasyDict(
{'edge_channels':16, 'num_filters':[64,8], 'num_bond_types':3,
'num_heads':4, 'cutoff':10.0, 'num_flow_layers':6}
)
config = EasyDict(
{'deq_coeff':0.9, 'hidden_channels':64, 'hidden_channels_vec':16, 'use_conv1d':False, 'num_bond_types':4,
'bottleneck':(8,2), 'protein_atom_feature_dim':27, 'ligand_atom_feature_dim':15, 'num_atom_type':9,
'msg_annealing':True, 'encoder':encoder_cfg, 'atom_flow':atom_flow_cfg, 'pos_predictor':pos_predictor_cfg,
'edge_flow':edge_flow_cfg, 'focal_net':focal_net_cfg, 'pos_filter':pos_filter_cfg}
)
protein_featurizer = FeaturizeProteinAtom()
ligand_featurizer = FeaturizeLigandAtom(atomic_numbers=[6,7,8,9,15,16,17,35,53])
traj_fn = LigandTrajectory(perm_type='mix', num_atom_type=9)
focal_masker = FocalMaker(r=6.0, num_work=16, atomic_numbers=[6,7,8,9,15,16,17,35,53])
atom_composer = AtomComposer(
knn=16, num_workers=16, graph_type='knn', radius=10.0, use_protein_bond=False
)
combine = Combine(traj_fn, focal_masker, atom_composer, lig_only=True)
transform = TrajCompose([
RefineData(),
LigandCountNeighbors(),
protein_featurizer,
ligand_featurizer,
combine,
collate_fn
])
dataset = LoadDataset('pretrain_data/ZINC_PretrainingDataset.lmdb', transform=transform)
print('Num data:', len(dataset))
train_set, valid_set = LoadDataset.split(dataset, val_num=10000, shuffle=True, random_seed=0)
model = PocketFlow(config).to('cuda:0')
print(model.get_parameter_number())
optimizer = torch.optim.Adam(model.parameters(), lr=2.e-4, weight_decay=0, betas=(0.99, 0.999))
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.6, patience=10, min_lr=1.e-5)
exp = Experiment(
model, train_set, optimizer, valid_set=valid_set, scheduler=scheduler,
device='cuda:0', data_parallel=False, use_amp=False
)
exp.fit_step(
1000000, valid_per_step=5000, train_batch_size=256, valid_batch_size=512, print_log=False,
with_tb=True, logdir='./pretraining_log', schedule_key='loss', num_workers=16,
pin_memory=False, follow_batch=[], exclude_keys=[], collate_fn=None,
max_edge_num_in_batch=2000000
)