We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Importing .sds-FIles doesn't work (Statisch wird kein Fehler erkannt, aber dynamisch bei der Ausführung)
2024-05-17 10:38:33.418 [warning] root:Message queue terminated: EOFError() 2024-05-17 10:45:06.706 [warning] . warnings.warn( 2024-05-17 10:47:48.353 [warning] . warnings.warn( 2024-05-17 10:56:49.427 [debug] root:Received Message: {"type":"program","id":"7f1dda19-c56c-4d88-88bc-4b8c687f589b","data":{"code":{"creditScore":{"gen_creditScore":"# Imports ----------------------------------------------------------------------\r\n\r\nimport safeds_runner\r\nfrom safeds.data.tabular.containers import Table\r\nfrom safeds.data.tabular.transformation import LabelEncoder, OneHotEncoder\r\nfrom safeds.ml.classical.classification import RandomForestClassifier\r\nfrom test.gen_test import calculateAccuracyTemplate\r\n\r\n# Segments ---------------------------------------------------------------------\r\n\r\ndef createClassifierResults(encoded, outputColumn):\r\n __gen_classifier3 = safeds_runner.memoized_static_call(\r\n \"safeds.ml.classical.classification.RandomForestClassifier\",\r\n RandomForestClassifier,\r\n [],\r\n {\"number_of_trees\": 200, \"maximum_depth\": None, \"minimum_number_of_samples_in_leaves\": 1},\r\n []\r\n )\r\n __gen_accuracy3 = calculateAccuracyTemplate(encoded, outputColumn, __gen_classifier3)\r\n __gen_accList = [__gen_accuracy3[0]]\r\n __gen_nameList = ['RandomForest']\r\n __gen_f1List = [__gen_accuracy3[1]]\r\n __gen_precList = [__gen_accuracy3[2]]\r\n __gen_recList = [__gen_accuracy3[3]]\r\n __gen_yield_table = safeds_runner.memoized_static_call(\r\n \"safeds.data.tabular.containers.Table.from_dict\",\r\n Table.from_dict,\r\n [{'Name': __gen_nameList, 'Accuracy': __gen_accList, 'F1': __gen_f1List, 'Precision': __gen_precList, 'Recall': __gen_recList}],\r\n {},\r\n []\r\n )\r\n return __gen_yield_table\r\n\r\ndef calculateAccuracy(data, outputColumn, classifier):\r\n __gen_receiver_0 = data\r\n __gen_training, __gen_test = safeds_runner.memoized_dynamic_call(\r\n __gen_receiver_0,\r\n \"split_rows\",\r\n [0.9],\r\n {\"shuffle\": True},\r\n []\r\n )\r\n __gen_receiver_1 = __gen_training\r\n __gen_trainingTable = safeds_runner.memoized_dynamic_call(\r\n __gen_receiver_1,\r\n \"to_tabular_dataset\",\r\n [outputColumn],\r\n {\"extra_names\": None},\r\n []\r\n )\r\n __gen_receiver_2 = __gen_test\r\n __gen_testTable = safeds_runner.memoized_dynamic_call(\r\n __gen_receiver_2,\r\n \"to_tabular_dataset\",\r\n [outputColumn],\r\n {\"extra_names\": None},\r\n []\r\n )\r\n __gen_receiver_3 = classifier\r\n __gen_trained = safeds_runner.memoized_dynamic_call(\r\n __gen_receiver_3,\r\n \"fit\",\r\n [__gen_trainingTable],\r\n {},\r\n []\r\n )\r\n __gen_receiver_4 = __gen_trained\r\n __gen_accuracy = safeds_runner.memoized_dynamic_call(\r\n __gen_receiver_4,\r\n \"accuracy\",\r\n [__gen_testTable],\r\n {},\r\n []\r\n )\r\n __gen_receiver_5 = __gen_trained\r\n __gen_f1 = safeds_runner.memoized_dynamic_call(\r\n __gen_receiver_5,\r\n \"f1_score\",\r\n [__gen_testTable, 'Good'],\r\n {},\r\n []\r\n )\r\n __gen_receiver_6 = __gen_trained\r\n __gen_prec = safeds_runner.memoized_dynamic_call(\r\n __gen_receiver_6,\r\n \"precision\",\r\n [__gen_testTable, 'Good'],\r\n {},\r\n []\r\n )\r\n __gen_receiver_7 = __gen_trained\r\n __gen_rec = safeds_runner.memoized_dynamic_call(\r\n __gen_receiver_7,\r\n \"recall\",\r\n [__gen_testTable, 'Good'],\r\n {},\r\n []\r\n )\r\n __gen_yield_result = [__gen_accuracy, __gen_f1, __gen_prec, __gen_rec]\r\n return __gen_yield_result\r\n\r\n# Pipelines --------------------------------------------------------------------\r\n\r\ndef creditScorePipeline():\r\n __gen_toRemove = ['ID', 'CustomerID', 'Month', 'Name', 'SSN', 'CreditHistoryAge', 'MonthlyInhandSalary', 'TypeofLoan']\r\n safeds_runner.save_placeholder('toRemove', __gen_toRemove)\r\n __gen_toOneHotEncode = ['PaymentBehaviour', 'PaymentofMinAmount', 'Occupation']\r\n safeds_runner.save_placeholder('toOneHotEncode', __gen_toOneHotEncode)\r\n __gen_toLabelEncode = ['CreditMix']\r\n safeds_runner.save_placeholder('toLabelEncode', __gen_toLabelEncode)\r\n __gen_receiver_0 = safeds_runner.memoized_static_call(\r\n \"safeds.data.tabular.containers.Table.from_csv_file\",\r\n Table.from_csv_file,\r\n [safeds_runner.absolute_path('train.csv')],\r\n {\"separator\": ','},\r\n [safeds_runner.file_mtime('train.csv')]\r\n )\r\n __gen_table = safeds_runner.memoized_dynamic_call(\r\n __gen_receiver_0,\r\n \"shuffle_rows\",\r\n [],\r\n {},\r\n []\r\n )\r\n safeds_runner.save_placeholder('table', __gen_table)\r\n __gen_receiver_1 = __gen_table\r\n __gen_receiver_2 = safeds_runner.memoized_dynamic_call(\r\n __gen_receiver_1,\r\n \"remove_columns\",\r\n [__gen_toRemove],\r\n {},\r\n []\r\n )\r\n __gen_receiver_3 = safeds_runner.memoized_dynamic_call(\r\n __gen_receiver_2,\r\n \"remove_rows_with_missing_values\",\r\n [],\r\n {\"column_names\": None},\r\n []\r\n )\r\n def __gen_lambda_4(r):\r\n __gen_receiver_5 = r\r\n __gen_receiver_6 = safeds_runner.memoized_dynamic_call(\r\n __gen_receiver_5,\r\n \"get_value\",\r\n ['Age'],\r\n {},\r\n []\r\n )\r\n return safeds_runner.memoized_dynamic_call(\r\n __gen_receiver_6,\r\n \"lt\",\r\n [0],\r\n {},\r\n []\r\n )\r\n __gen_receiver_7 = safeds_runner.memoized_dynamic_call(\r\n __gen_receiver_3,\r\n \"remove_rows\",\r\n [__gen_lambda_4],\r\n {},\r\n []\r\n )\r\n def __gen_lambda_8(r):\r\n __gen_receiver_9 = r\r\n __gen_receiver_10 = safeds_runner.memoized_dynamic_call(\r\n __gen_receiver_9,\r\n \"get_value\",\r\n ['NumBankAccounts'],\r\n {},\r\n []\r\n )\r\n return safeds_runner.memoized_dynamic_call(\r\n __gen_receiver_10,\r\n \"lt\",\r\n [0],\r\n {},\r\n []\r\n )\r\n __gen_removed = safeds_runner.memoized_dynamic_call(\r\n __gen_receiver_7,\r\n \"remove_rows\",\r\n [__gen_lambda_8],\r\n {},\r\n []\r\n )\r\n safeds_runner.save_placeholder('removed', __gen_removed)\r\n __gen_receiver_11 = safeds_runner.memoized_static_call(\r\n \"safeds.data.tabular.transformation.OneHotEncoder\",\r\n OneHotEncoder,\r\n [],\r\n {\"separator\": '__'},\r\n []\r\n )\r\n __gen_hotEncoded = safeds_runner.memoized_dynamic_call(\r\n __gen_receiver_11,\r\n \"fit_and_transform\",\r\n [__gen_removed],\r\n {\"column_names\": __gen_toOneHotEncode},\r\n []\r\n )[1]\r\n safeds_runner.save_placeholder('hotEncoded', __gen_hotEncoded)\r\n __gen_receiver_12 = safeds_runner.memoized_static_call(\r\n \"safeds.data.tabular.transformation.LabelEncoder\",\r\n LabelEncoder,\r\n [],\r\n {\"partial_order\": []},\r\n []\r\n )\r\n __gen_labeled = safeds_runner.memoized_dynamic_call(\r\n __gen_receiver_12,\r\n \"fit_and_transform\",\r\n [__gen_hotEncoded],\r\n {\"column_names\": __gen_toLabelEncode},\r\n []\r\n )[1]\r\n safeds_runner.save_placeholder('labeled', __gen_labeled)\r\n __gen_result = createClassifierResults(__gen_labeled, 'CreditScore')\r\n safeds_runner.save_placeholder('result', __gen_result)\r\n","gen_creditScore_creditScorePipeline":"from .gen_creditScore import creditScorePipeline\r\n\r\nif __name__ == '__main__':\r\n creditScorePipeline()\r\n"}},"main":{"modulepath":"creditScore","module":"creditScore","pipeline":"creditScorePipeline"},"cwd":"c:\\Users\\TimLocke\\OneDrive - Objektkultur Software GmbH\\Desktop\\Uni\\24 Sommersemester\\Projektgruppe Angewandte Softwaretechnologie\\ast-sose24-dsl\\credit_score"}}
DIe Methdoe sollte ausgeführt werden
No response
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Describe the bug
Importing .sds-FIles doesn't work
(Statisch wird kein Fehler erkannt, aber dynamisch bei der Ausführung)
To Reproduce
Expected behavior
DIe Methdoe sollte ausgeführt werden
Screenshots (optional)
No response
Additional Context (optional)
No response
The text was updated successfully, but these errors were encountered: