-
Notifications
You must be signed in to change notification settings - Fork 23
/
MB01RU.f
267 lines (267 loc) · 8.81 KB
/
MB01RU.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
SUBROUTINE MB01RU( UPLO, TRANS, M, N, ALPHA, BETA, R, LDR, A, LDA,
$ X, LDX, DWORK, LDWORK, INFO )
C
C PURPOSE
C
C To compute the matrix formula
C _
C R = alpha*R + beta*op( A )*X*op( A )',
C _
C where alpha and beta are scalars, R, X, and R are symmetric
C matrices, A is a general matrix, and op( A ) is one of
C
C op( A ) = A or op( A ) = A'.
C
C The result is overwritten on R.
C
C ARGUMENTS
C
C Mode Parameters
C
C UPLO CHARACTER*1
C Specifies which triangles of the symmetric matrices R
C and X are given as follows:
C = 'U': the upper triangular part is given;
C = 'L': the lower triangular part is given.
C
C TRANS CHARACTER*1
C Specifies the form of op( A ) to be used in the matrix
C multiplication as follows:
C = 'N': op( A ) = A;
C = 'T': op( A ) = A';
C = 'C': op( A ) = A'.
C
C Input/Output Parameters
C
C M (input) INTEGER _
C The order of the matrices R and R and the number of rows
C of the matrix op( A ). M >= 0.
C
C N (input) INTEGER
C The order of the matrix X and the number of columns of the
C the matrix op( A ). N >= 0.
C
C ALPHA (input) DOUBLE PRECISION
C The scalar alpha. When alpha is zero then R need not be
C set before entry, except when R is identified with X in
C the call.
C
C BETA (input) DOUBLE PRECISION
C The scalar beta. When beta is zero then A and X are not
C referenced.
C
C R (input/output) DOUBLE PRECISION array, dimension (LDR,M)
C On entry with UPLO = 'U', the leading M-by-M upper
C triangular part of this array must contain the upper
C triangular part of the symmetric matrix R.
C On entry with UPLO = 'L', the leading M-by-M lower
C triangular part of this array must contain the lower
C triangular part of the symmetric matrix R.
C On exit, the leading M-by-M upper triangular part (if
C UPLO = 'U'), or lower triangular part (if UPLO = 'L'), of
C this array contains the corresponding triangular part of
C _
C the computed matrix R. When R is identified with X in
C the call, after exit, the diagonal entries of R must be
C divided by 2.
C
C LDR INTEGER
C The leading dimension of array R. LDR >= MAX(1,M).
C
C A (input) DOUBLE PRECISION array, dimension (LDA,k)
C where k is N when TRANS = 'N' and is M when TRANS = 'T' or
C TRANS = 'C'.
C On entry with TRANS = 'N', the leading M-by-N part of this
C array must contain the matrix A.
C On entry with TRANS = 'T' or TRANS = 'C', the leading
C N-by-M part of this array must contain the matrix A.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,k),
C where k is M when TRANS = 'N' and is N when TRANS = 'T' or
C TRANS = 'C'.
C
C X (input) DOUBLE PRECISION array, dimension (LDX,N)
C On entry, if UPLO = 'U', the leading N-by-N upper
C triangular part of this array must contain the upper
C triangular part of the symmetric matrix X and the strictly
C lower triangular part of the array is not referenced.
C On entry, if UPLO = 'L', the leading N-by-N lower
C triangular part of this array must contain the lower
C triangular part of the symmetric matrix X and the strictly
C upper triangular part of the array is not referenced.
C The diagonal elements of this array are modified
C internally, but are restored on exit.
C
C LDX INTEGER
C The leading dimension of array X. LDX >= MAX(1,N).
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C This array is not referenced when beta = 0, or M*N = 0.
C
C LDWORK The length of the array DWORK.
C LDWORK >= M*N, if beta <> 0;
C LDWORK >= 0, if beta = 0.
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -k, the k-th argument had an illegal
C value.
C
C METHOD
C
C The matrix expression is efficiently evaluated taking the symmetry
C into account. Specifically, let X = T + T', with T an upper or
C lower triangular matrix, defined by
C
C T = triu( X ) - (1/2)*diag( X ), if UPLO = 'U',
C T = tril( X ) - (1/2)*diag( X ), if UPLO = 'L',
C
C where triu, tril, and diag denote the upper triangular part, lower
C triangular part, and diagonal part of X, respectively. Then,
C
C A*X*A' = ( A*T )*A' + A*( A*T )', for TRANS = 'N',
C A'*X*A = A'*( T*A ) + ( T*A )'*A, for TRANS = 'T', or 'C',
C
C which involve BLAS 3 operations (DTRMM and DSYR2K).
C
C NUMERICAL ASPECTS
C
C The algorithm requires approximately
C
C 2 2
C M x N + 1/2 x N x M
C
C operations.
C
C FURTHER COMMENTS
C
C This is a simpler version for MB01RD.
C
C CONTRIBUTORS
C
C V. Sima, Katholieke Univ. Leuven, Belgium, Jan. 1999.
C
C REVISIONS
C
C A. Varga, German Aerospace Center, Oberpfaffenhofen, March 2004.
C V. Sima, Research Institute for Informatics, Bucharest, Mar. 2004,
C Sep. 2013, Dec. 2013.
C
C KEYWORDS
C
C Elementary matrix operations, matrix algebra, matrix operations.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, HALF
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
$ HALF = 0.5D0 )
C .. Scalar Arguments ..
CHARACTER TRANS, UPLO
INTEGER INFO, LDA, LDR, LDWORK, LDX, M, N
DOUBLE PRECISION ALPHA, BETA
C .. Array Arguments ..
DOUBLE PRECISION A(LDA,*), DWORK(*), R(LDR,*), X(LDX,*)
C .. Local Scalars ..
LOGICAL LTRANS, LUPLO
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DLACPY, DLASCL, DLASET, DSCAL, DSYR2K, DTRMM,
$ XERBLA
C .. Intrinsic Functions ..
INTRINSIC MAX
C .. Executable Statements ..
C
C Test the input scalar arguments.
C
INFO = 0
LUPLO = LSAME( UPLO, 'U' )
LTRANS = LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' )
C
IF( ( .NOT.LUPLO ).AND.( .NOT.LSAME( UPLO, 'L' ) ) )THEN
INFO = -1
ELSE IF( ( .NOT.LTRANS ).AND.( .NOT.LSAME( TRANS, 'N' ) ) )THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( LDR.LT.MAX( 1, M ) ) THEN
INFO = -8
ELSE IF( LDA.LT.1 .OR. ( LTRANS .AND. LDA.LT.N ) .OR.
$ ( .NOT.LTRANS .AND. LDA.LT.M ) ) THEN
INFO = -10
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
INFO = -12
ELSE IF( ( BETA.NE.ZERO .AND. LDWORK.LT.M*N )
$ .OR.( BETA.EQ.ZERO .AND. LDWORK.LT.0 ) ) THEN
INFO = -14
END IF
C
IF ( INFO.NE.0 ) THEN
C
C Error return.
C
CALL XERBLA( 'MB01RU', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF ( M.EQ.0 )
$ RETURN
C
IF ( BETA.EQ.ZERO .OR. N.EQ.0 ) THEN
IF ( ALPHA.EQ.ZERO ) THEN
C
C Special case alpha = 0.
C
CALL DLASET( UPLO, M, M, ZERO, ZERO, R, LDR )
ELSE
C
C Special case beta = 0 or N = 0.
C
IF ( ALPHA.NE.ONE )
$ CALL DLASCL( UPLO, 0, 0, ONE, ALPHA, M, M, R, LDR, INFO )
END IF
RETURN
END IF
C
C General case: beta <> 0.
C Compute W = op( A )*T or W = T*op( A ) in DWORK, and apply the
C updating formula (see METHOD section).
C Workspace: need M*N.
C
CALL DSCAL( N, HALF, X, LDX+1 )
C
IF( LTRANS ) THEN
C
CALL DLACPY( 'Full', N, M, A, LDA, DWORK, N )
CALL DTRMM( 'Left', UPLO, 'NoTranspose', 'Non-unit', N, M,
$ ONE, X, LDX, DWORK, N )
CALL DSYR2K( UPLO, TRANS, M, N, BETA, DWORK, N, A, LDA, ALPHA,
$ R, LDR )
C
ELSE
C
CALL DLACPY( 'Full', M, N, A, LDA, DWORK, M )
CALL DTRMM( 'Right', UPLO, 'NoTranspose', 'Non-unit', M, N,
$ ONE, X, LDX, DWORK, M )
CALL DSYR2K( UPLO, TRANS, M, N, BETA, DWORK, M, A, LDA, ALPHA,
$ R, LDR )
C
END IF
C
CALL DSCAL( N, TWO, X, LDX+1 )
C
RETURN
C *** Last line of MB01RU ***
END